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Fluid Mechanics is Beautiful 
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Introduction & Basic Concepts 



All matter consists of two states, solid and fluid  
 
there are two classes of fluids, liquids and gases 

The Concept of Solid, Liquid and Gas 

solid liquid gas 
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Basic concept 

• Newton’s Second Law 
                       F = ma 
or, equivalently,  
• momentum principle: 

force = rate of change of 
momentum 

• mechanical energy 
principle: 

work done = Change of 
kinetic + potential energy 

Power  
rate of doing work (i.e. power) = 

force x velocity 

Equation of Motion 
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Work or Work done 
(Nm) 
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Energy transmission through rotating shafts 

is commonly encountered in practice. 

The pressure force acting on (a) the 

moving boundary of a system in a 

piston-cylinder device, and (b) the 

differential surface area of a system 

of arbitrary shape. 
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Fluids 

Fluids may be defined as  substance which is capable of flowing. 
Fluids flow because of differences in pressure. 

A fluid is a substance that flows under the action of shearing 
forces.  If a fluid is at rest, we know that the forces on it are in 
balance. 

A gas is a fluid that is easily compressed.  It fills any vessel in 
which it is contained. 

A liquid is a fluid which is hard to compress.  A given mass of 
liquid will occupy a fixed volume, irrespective of the size of the 
container.   
Fluid mechanics is the study of fluids  
 
 * at rest (fluid statics)  
 
  * in motion (fluid dynamics)  MECH-KIOT 
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The No-Slip Condition 

• No-slip condition:  A fluid in direct 

contact with a solid “sticks” to the 

surface due to viscous effects 

 

• Responsible for generation of wall shear 

stress w,, surface drag D= ∫ w dA, and 

the development of the boundary layer 

 

• Important boundary condition in 

formulating initial boundary value 

problem (IBVP) for analytical and 

computational fluid dynamics analysis 
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Properties of Fluids 



Properties of a System 

• Any characteristic of a system is called a 

property.  

• Familiar:  pressure P, temperature T, 
volume V, and mass m. 

• Less familiar: viscosity(), thermal 

conductivity (kT), modulus of 

elasticity (k), thermal expansion 

coefficient (), Coefficient of volume 

expansion() vapor pressure, surface 

tension(). 

• Intensive properties are independent of 

the mass of the system.  Examples:  

temperature, pressure, and density.  

 

 

Extensive properties are those whose 

value depends on the size of the system.  

Examples:  Total mass, total volume, 

and total momentum. 

Extensive properties per unit mass are 

called specific properties.  Examples 

include specific volume v = V/m and 

specific total energy e=E/m. 
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Cont.. 

• In a given flow situation,  

 the determination of the properties of the fluid either by 

experiment or theory as a function of position and time is 

considered to be the solution to the problem 

 

• In almost all cases, the emphasis is on the space-time 

(x,y,z,t) distribution of the fluid properties 
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Density and Specific Gravity 
• Density is defined as the mass per unit volume  = m/V.  Density has units of 

kg/m3  

 

• Specific volume is defined as v = 1/ = V/m. 

 

• For a gas, density depends on temperature and pressure. 

 

• Specific gravity, or relative density is defined as the ratio of the density of a 
substance to the density of some standard substance at a specified 
temperature (usually water at 4°C), i.e.,  SG=/H20.  SG is a dimensionless 
quantity. 

 

• The specific weight or weight density is defined as the weight per unit volume,  
i.e., s = g where g is the gravitational acceleration. gs has units of N/m3. 
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Vapor Pressure and Cavitation 

• Vapor Pressure Pv is defined as the pressure exerted by its 

vapor in phase equilibrium with its liquid at a given 

temperature 

If P drops below Pv, liquid is locally vaporized, 

creating cavities of vapor.   

Vapor cavities collapse when local P rises above Pv. 

Collapse of cavities is a violent process which can 

damage machinery. 

Cavitation is noisy, and can cause structural 

vibrations. 

Cavitation Number  
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Cavitation must avoided in  flow systems since it  reduces 

performance, generates annoying vibrations and noise and 

causes damage to equipment . 

 

The large number of bubbles collapsing near the solid surface 

over a long period of time may cause erosion, surface pitting, 

fatigue failure and the destruction of the components or 

machinery. 

 

The presence of cavitation in a flow system can be sensed by its 

characteristic tumbling sound 
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Energy and Specific Heats 

• Total energy E is comprised of numerous forms:  thermal, mechanical, 
kinetic, potential, electrical, magnetic, chemical, and nuclear. 

• Units of energy are joule (J) or British thermal unit (BTU). 

• Microscopic energy  

• Internal energy u is for a non-flowing fluid and is due to molecular 
activity. 

• Enthalpy h=u+Pv is for a flowing fluid and includes flow energy (Pv). 

• Macroscopic energy  

• Kinetic energy ke=V2/2 

• Potential energy pe=gz 

• In the absence of electrical, magnetic, chemical, and nuclear energy, the 
total energy is eflowing=h+V2/2+gz. 
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How does fluid volume change with P  and T ? 

Fluids expand as T ↑ or P ↓ 

Fluids contract as T ↓ or P ↑ 

• The amount of volume change is different for different fluids  

• Need fluid properties that relate volume changes to changes in 

P  and T. 

• Coefficient of compressibility   

 

• Coefficient of volume expansion  

 

• Combined effects of P and T can be written as 
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Coefficient of Compressibility 

• The fluids act like elastic solids with respect to pressure. 

• It is also called as bulk modulus of compressibility or bulk 

modulus of elasticity 

 

 

• A larger value of k indicates that a large change in pressure is 

required to cause very small change in volume  and thus a 

fluid with a large k is essentially incompressible. 
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• coefficient of compressibility of an ideal gas kideal gas = P    (Pa) 
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Isothermal Compressibility 

• The inverse of the coefficient of compressibility is called the isothermal 

compressibility 

 

 

 

 

 

• The isothermal compressibility of a fluid represents the fractional change 

in volume or density corresponding to a unit change in pressure 
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Viscosity 

• Viscosity is a property that 

represents the internal resistance 

of a fluid to motion.  

 

• The force a flowing fluid exerts on 

a body in the flow direction is 

called the drag force. 
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Viscosity 

• Viscosity is the property of a fluid, due to cohesion and interaction between 
molecules, which offers resistance to sheer deformation. Different fluids 
deform at different rates under the same shear stress.  

 

 

 

 

 

• Fluid with a high viscosity such as syrup, deforms more slowly than fluid with 
a low viscosity such as water.  

 

MECH-KIOT 



• To obtain a relation for viscosity, 

consider a fluid layer between two 

very large parallel plates separated 

by a distance ℓ 

• Definition of shear stress is  = F/A. 

• Using the no-slip condition,  

u(0) = 0 and u(ℓ) = V, the velocity 

profile and gradient are u(y)= Vy/ℓ 

and du/dy=V/ℓ 

• Shear stress for Newtonian fluid:   

=  du/dy 

•  is the dynamic viscosity and has 

units of kg/m·s, Pa·s, or poise. 
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• Dynamic Viscosity 

   =   (du/dy)  

 

• Dynamic viscosity is also called as absolute 
viscosity or coefficient of viscosity. 

 

• Unit of dynamic  viscosity kg/ms or Ns/m2 
or poise 

 Poise = 0.1 Ns/m2 

 

• Kinematic viscosity  = dynamic viscosity / 
density 

 Unit of Kinematic Viscosity is m2/s 

 1 Stoke = 1 cm2/s = 10-4m2/s 
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Types of fluids 

Fluids which do not follow the linear law of viscosity  are 

called nonnewtonian and also called  rheological fluids . 
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Types of Non-Newtonian fluids: 

• Dilatant, or shear-thickening fluid increases resistance with increasing applied 

stress. Ex: Solutions with suspended starch and sand  

 

• Pseudoplastic, or shear-thinning fluid decreases resistance with increasing 

stress. Ex: paints , polymer solutions 

 

•  If the thinning effect is very strong, as with the dashed-line curve, the fluid 

is termed plastic. The limiting case of a plastic substance is one which requires 

a finite yield stress before it begins to flow.  

 

• Bingham plastic 
 Flow behaviour after yield  may also be nonlinear. An example of a yielding 

fluid is toothpaste, which will not flow out of the tube until a finite stress is 
applied by squeezing 
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• A further complication of nonnewtonian behavior is the transient effect 

shown in Fig below.  
 
 
 
 
 
 
 
 
 

• Some fluids require a gradually increasing shear stress to maintain a constant 
strain rate and are called rheopectic.  

 
• The opposite case of a fluid which thins out with time and requires decreasing 

stress is termed thixotropic.  
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Variation of Viscosity with Temperature 
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• In Liquids, viscosity is caused by 

the cohesive forces between the 

molecules. 

• Viscosity of liquids decrease with 

increase in temperature. This is 

because in a liquid the molecules 

possess more energy at high 

temperature, so liquids can 

oppose cohesive intermolecular 

forces more strongly. As a result, 

the energized liquid molecules 

can move more freely 

• In gases, Viscosity is caused by the 

molecular collisions between 

molecules. 

• The intermolecular forces are 

negligible, so the gas molecules at 

high temperature move randomly at 

high velocities. As a result molecular 

collision per unit volume per unit 

time increases. 

The viscosity of a fluid is directly related to the pumping 
power needed to transport a fluid in pipe or to move a 
body through a fluid. 
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Surface Tension 

. 
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Practical Examples 

• Drop of blood forms a hump on a horizontal glass. 

• Water droplets from rain  

• A drop of mercury forms a near perfect square 

• Dew hang from leaves of trees 

• A soap released into air  

• Liquid fuel injected into the engine 
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• In all these observations, the liquid droplets behave like small spherical 

balloons filled with liquid and the surface of the liquid acts like a stretched 

elastic membrane under tension. 

 

• The pulling force that causes this tension acts parallel to the surface and it is 

due to cohesive forces between the molecules of the fluid.  

 

• Repulsive forces from interior molecules causes the liquid to minimize its 

surface area and attain a spherical shape 

 

• The magnitude of this force per unit length is called surface tension s 

(N/m). This effect is also called surface energy.  
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Capillary Effect 

• Capillary effect is the rise or fall of a 

liquid in a small-diameter tube. 

• The curved free surface in the tube is 

called  the meniscus. 

• Water meniscus curves up because 

water is a wetting fluid. 

• Mercury meniscus curves down 

because mercury is a nonwetting 
fluid. 

• Force balance can describe 

magnitude of capillary rise. 

MECH-KIOT 



Wetting or contact angle 

The strength of capillary effect is 

quantified by contact angle  

 

It is defined as the angle that the tangent 

to the liquid surface makes with solid 

surface at the point of contact 

A liquid is said to wet the surface 

if   < 90o and 

 not to wet the surface when  > 

90o  

Capillary rise/drop  

  h = 2scos  / gR 
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Pressure 

• Pressure is defined as a normal force 
exerted by a fluid per unit area. 

 

• Unit of pressure is N/m2, which is also 
called as pascal (Pa).  

 

• Since the unit Pa is too small for 
pressures encountered in practice, 
kilopascal (1 kPa = 103 Pa) and 
megapascal             (1 MPa = 106 Pa) are 
commonly used. 

 

• Other units include bar, atm, kgf/cm2, 
lbf/in2=psi. 
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Absolute, gage, and vacuum pressures 
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• Actual pressure at a give point is called the absolute pressure. 

 

• Most pressure-measuring devices are calibrated to read zero in 

the atmosphere, and therefore indicate gage pressure,   Pgage=Pabs 

- Patm. 

 

• Pressure below atmospheric pressure are called vacuum pressure, 

Pvac=Patm - Pabs. 

MECH-KIOT 



Barometers 

h 

vacuu
m 

mercur
y 

The pressure at  A  is the same as the 
pressure of the surrounding air, since it’s 
at the surface.  A  and  B  are at the same 
pressure, since they are at the same height.  
The pressure at  C  is zero, since a vacuum 
has no pressure.  The pressure difference 
from  B to C  is   g h  (where    is the 
density of mercury), which is the pressure 
at  B, which is the pressure at  A, which is 
the air pressure.  Thus, the height of the 
barometer directly measures air pressure.   

B A 

C 
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Pressure at a Point 

•Pressure at any point in a fluid is the same in all 

directions. (Pascal’s Law) Px =Py=Pz 

•Pressure has a magnitude, but not a specific 

direction, and thus it is a scalar quantity. 
 

Hydraulic Jack 
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Pascal’s Law 

1 2 2 2
1 2

1 2 1 1

F F F A
P P

A A F A
    

• Pressure applied to a confined 

fluid increases the pressure 

throughout by the same 

amount.  

• In picture, pistons are at same 

height: 

 

 

• Ratio A2/A1 is called ideal 

mechanical advantage 
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Variation of Pressure with Depth 

• In the presence of a gravitational field, 

pressure increases with depth because 

more fluid rests on deeper layers.  

• To obtain a relation for the variation of 

pressure with depth, consider 

rectangular element 

• Force balance in z-direction gives  
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Evaluating Pressure changes through a column of 

multiple fluids 
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Variation of Pressure with Depth 

• Pressure in a fluid at rest is independent of the shape of the 
container. 

• Pressure is the same at all points on a horizontal plane in a 
given fluid. 
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Points a, b, c, and d are at equal 

depths in water and therefore have 

identical pressures. 

Point D has a different pressure 

from A, B, and C because it is not 

connected  to them by a water path 



Manometry 

Pressure measuring devices based on liquid columns in 
vertical or inclined tubes are called manometers 

Piezometer Tube U-Tube Manometer 
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Differential U-Tube Manometer 
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Inclined-Tube Manometer 

Inclined-tube manometers can be used to measure small 

pressure differences accurately. 
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                     Type of Fluids 
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Classification of Flows 

 
Viscous vs. Inviscid Regions of Flow 
 
Internal vs. External Flow 
 
Compressible vs. Incompressible Flow 
 
Laminar vs. Turbulent Flow 
 
Steady vs. Unsteady Flow 
 
One-, Two-, and Three-Dimensional Flows 
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• Ideal fluids have no viscosity – there is no internal friction or loss of 
mechanical energy.  

• No such fluid exists, but many flows can be approximated as ideal if 
viscous forces are small and do not cause major flow phenomena such as 
boundary-layer separation. 

• Real fluids have non-zero viscosity  

• They satisfy the no-slip condition at solid boundaries.  i.e. the (relative) 
velocity at the boundary is zero.  

Ideal fluids & Real Fluids 
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Viscous vs. Inviscid Regions of Flow 

• Regions where frictional effects 

are significant are called viscous 

regions.  They are usually close 

to solid surfaces. 

 

• Regions where frictional forces 

are small compared to inertial or 

pressure forces are called inviscid 
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Internal vs. External Flow 

• Internal flows are dominated 

by the influence of viscosity 

throughout the flow field 

 

 

• For external flows, viscous effects 

are limited to the boundary layer 

and wake. 
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Compressible vs. Incompressible Flow 

• A flow is classified as incompressible if the density remains nearly 

constant. 

• Liquid flows are typically incompressible. 

• Gas flows are often compressible, especially for high speeds. 

• Mach number, Ma = c / a is a good indicator of whether or not 

compressibility effects are important. 

• Ma < 0.3 :  Incompressible 

• Ma < 1 :  Subsonic 

• Ma = 1 :  Sonic 

• Ma > 1 :  Supersonic 

• Ma >> 1 :  Hypersonic 
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Laminar vs. Turbulent Flow 

Laminar:  highly ordered fluid motion 

with smooth streamlines.  

Turbulent:  highly disordered fluid motion 
characterized by velocity fluctuations and 
eddies. 

Transitional:  a flow that contains 

both laminar and turbulent regions 

Reynolds number, is the key parameter in determining whether flow is laminar or 
turbulent. 
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Steady vs. Unsteady Flow 

• Steady implies no change at a point 

with time.   

 

• Unsteady is the opposite of steady. 

– Transient usually describes a 

starting, or developing flow. 

– Periodic refers to a flow which 

oscillates about a mean. 

 

• Unsteady flows may appear steady if 

“time-averaged” 
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One-, Two-, and Three-Dimensional Flows 

• Velocity vector, U(x,y,z,t)= [Ux(x,y,z,t),Uy(x,y,z,t),Uz(x,y,z,t)] 

• Lower dimensional flows reduce complexity of analytical and 

computational solution 

• Change in coordinate system (cylindrical, spherical, etc.) may facilitate 

reduction in order. 

• Example:  for fully-developed pipe flow, velocity V(r) is a function of 

radius r and pressure p(z) is a function of distance z along the pipe.  
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 Fluid Statics 
Chapter 03 



Fluid Statics 

• Fluid Statics deals with problems associated with fluids at rest.  

• In fluid statics, there is no relative motion between adjacent 

fluid layers.  

• Therefore, there is no shear stress in the fluid trying to deform 

it.  

• The only stress in fluid statics is normal stress 

• Normal stress is due to pressure 

• Applications:  Floating or submerged bodies, water dams and 

gates, liquid storage tanks, etc. 
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Hoover Dam 
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Hydrostatic Forces on Plane Surfaces 

• On a plane surface, the 

hydrostatic forces form a system 

of parallel forces 

• For many applications, 

magnitude and location of 

application, which is called 

center of pressure, must be 

determined. 

• Atmospheric pressure Patm can 

be neglected when it acts on 

both sides of the surface. 
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Resultant Force 

• The magnitude of FR acting on a plane surface of a 

completely submerged plate in a homogenous fluid is equal 

to the product of the pressure PC at the centroid of the 

surface and the area A of the surface 
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Center of Pressure 

,xx C

p C

c

I
y y

y A
 

• Line of action of resultant force 
FR=PCA does not pass through the 
centroid of the surface.  In general, it 
lies underneath where the pressure is 
higher. 

• Vertical location of Center of Pressure 
is determined by equating the 
moment of the resultant force to the 
moment of the distributed pressure 
force.   

 

 

• Ixx,C is tabulated for simple 
geometries.  
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Hydrostatic Forces on Curved Surfaces 

• FR on a curved surface is more involved since it requires 

integration of the pressure forces that change direction along 

the surface. 

• Easiest approach:  determine horizontal and vertical 

components FH and FV separately. 
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Horizontal force 
component on the curved 
surface : FH=Fx 

Vertical force component 
on the curved surface:       
FV = Fy + w 

Magnitude of Resultant 
hydrostatic force   















H

V

2

V

2

HR

F

F
tan

FFF
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Hydrostatic Forces on Curved Surfaces 

• Horizontal force component on curved surface:  FH=Fx.  Line of 
action on vertical plane gives y coordinate of center of pressure 
on curved surface. 

 

• Vertical force component on curved surface:  FV=Fy+W, where 
W is the weight of the liquid in the enclosed block W=gV.  x 
coordinate of the center of pressure is a combination of line of 
action on horizontal plane (centroid of area) and line of action 
through volume (centroid of volume). 

 

• Magnitude of force FR=(FH
2+FV

2)1/2 & Angle of force is a = tan-
1(FV/FH) 
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Buoyancy and Stability 

•Why objects feel lighter and weighs less in a liquid 
than it does in air? 

•Objects made of wood or other lighter materials float 
on water. Why? 

 

•Buoyant force FB : The force offered by the fluid that 
tends to lift the body. 

•Buoyant force is caused by the increase in pressure in 
a fluid with depth. 
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Buoyancy is due to the fluid 
displaced by a body.  
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A flat plate of uniform 
thickness h submerged in a 
liquid parallel to the free 
surface 

Buoyant force acting on the plate is equal to the weight of the 
liquid displaced by the plate 

• It is independent of distance (s) of the body from the free surface  

• It is independent of the density of the solid body 
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For Floating bodies , the weight of the entire body 
must be equal to buoyant force, which is the weight 
of the fluid whose volume is equal to the volume of 
the submerged portion of the floating body. 
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Stability of Immersed Bodies 

• Rotational stability of immersed bodies depends upon relative 
location of center of gravity G and center of buoyancy B. 
 
• G below B  : stable 
• G above B  : unstable  
• G coincides with B : neutrally stable. 
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Stability of Floating Bodies 
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Fluid Kinematics 

Chapter 04 
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• Kinematics means the study of motion without considering the 

forces and moments that cause the motion.  

 

• Kinematics involves position, velocity, and acceleration, not 

force. 

 

• Fluid kinematics is the study of how fluids flow and how to 

describe fluid motion without considering the forces and 

moments that cause the motion.  

 

• Fluid kinematics describing how a fluid particle translates, 

distorts, and rotates, and how to visualize flow fields. 

Introduction 
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•Topics  

 
• Scalar and Vector Fields, Flow Field 

• Descriptions of fluid flow. 

• Material Derivative or Substantial Derivative 

• Fundamentals of Flow visualization. 

• Plots of fluid flow data. 

• Fundamental kinematic properties of fluid motion and deformation. 
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Field Representation 

Particle locations in terms of its 

position vector 

The representation of 

fluid parameters as 

functions of the 

spatial and temporal 

coordinates is termed 

a field representation 

of the flow 
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Scalar and Vector Fields  

• Scalar: Scalar is a quantity which can be expressed by a single number representing 
its magnitude.  
   Example: mass, density and temperature.  

 

• Scalar  Field :If at every point in a region, a scalar function has a defined value, 
the region is called a scalar field.  
   Example:  Temperature distribution in a rod. 
  

• Vector: Vector is a quantity which is specified by both magnitude and direction. 
               Example: Force, Velocity and Displacement.  

 

• Vector Field :If at every point in a region, a vector function has a defined value, 
the region is called a vector field.  

   Example: velocity field of a flowing fluid .  
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Descriptions of Fluid Flow 

• There are two general approaches in analyzing fluid mechanics 
problems 
 

Eulerian  
Description Lagrangian 

Description 
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Lagrangian Vs Eulerian 

 X A 

 X B 
 X C 

 V B 

 
 V A 

 V C 

P(x, y, z) 

(x, y, z ) 

V (x, y, z ) 

In the lagrangian 

description, one must keep 

track of the position and 

velocity of individual 

particles 

In the Eulerian 

description, one defines 

field variables, such as the 

pressure field and the 

velocity field at any 

location and instant in 

time MECH-KIOT 



Lagrangian Description 

• Lagrangian description of fluid flow tracks the position and velocity of individual 
particles. (eg. Brilliard ball on a pooltable.) 

 

• Motion is described based upon Newton's laws of motion.  

 

• Difficult to use for practical flow analysis. 

• Fluids are composed of billions of molecules. 

• Interaction between molecules hard to describe /model.  
 

• However, useful for specialized applications 

• Sprays, particles, bubble dynamics, rarefied gases. 

• Coupled Eulerian-Lagrangian methods. 

 

• Named after Italian mathematician Joseph Louis Lagrange (1736-1813). 

MECH-KIOT 



Eulerian Description 
• Eulerian description of fluid flow: a flow domain or control volume is defined by which 

fluid flows in and out. 

 

• We define field variables which are functions of space and time. 

• Pressure field, P=P(x,y,z,t) 

 

• Velocity field, 

 

• Acceleration field, 

 

These (and other) field variables define the flow field. 

 

• Well suited for formulation of initial boundary-value problems (PDE's). 

 

• Named after Swiss mathematician Leonhard Euler (1707-1783). 

     , , , , , , , , ,V u x y z t i v x y z t j w x y z t k  

     , , , , , , , , ,x y za a x y z t i a x y z t j a x y z t k   , , ,a a x y z t

 , , ,V V x y z t
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Eulerian and Lagrangian descriptions of temperature of a flowing 

fluid. 
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In the Eulerian method one may 

attach a temperature-measuring 

device to the top of the chimney 

(point 0) and record the 

temperature at that point as a 

function of time. At different times 

there are different fluid particles 

passing by the stationary device. 

Thus, one would obtain the 

temperature, T, for that location   

(x = xo, y=yo, z= zo) as a function of 

time. That is, T = T (xo, yo, zo,t) 

 

     In the Lagrangian method, one 

would attach the temperature-

measuring device to a particular fluid 

particle (particle A) and record that 

particle’s temperature as it moves 

about. Thus, one would obtain that 

particle’s temperature as a function 

of time, 

     TA = TA(t) 

Eulerian Description Lagrangian Description 
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Acceleration Field 
• Consider a fluid particle and Newton's second law,  

 

• The acceleration of the particle is the time derivative of the 

particle's velocity. 

 

 

• However, particle velocity at a point is the same as the fluid 

velocity, 

• To take the time derivative of, chain rule must be used. 

particle particle particleF m a

particle

particle

dV
a

dt


      , ,particle particle particle particleV V x t y t z t

particle particle particle

particle

dx dy dzV dt V V V
a

t dt x dt y dt z dt

   
   
   
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• Since 

 

 

 

• In vector form, the acceleration can be written as 

 

 

 

• First term is called the local acceleration and is nonzero only for unsteady 
flows. 

 

• Second term is called the advective or convective acceleration and accounts for 
the effect of the fluid particle moving to a new location in the flow, where the 
velocity is different. 

particle

V V V V
a u v w

t x y z

   
   
   

, ,
particle particle particledx dy dz

u v w
dt dt dt

  


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 Material Derivative 

 The material derivative D/Dt is defined by 

following a fluid particle as it moves 

throughout the flow field. 

t 

t + dt 

t + 2 dt 

t +3 dt 
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Material Derivative 
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the above equation is valid for any particle, we can drop the reference to particle A 

and obtain the acceleration field from the velocity field as 
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The above result is often written in shorthand notation as 

is termed the material derivative or substantial derivative 

An often-used shorthand notation for the material derivative operator is 

the rate of change of temperature as 
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Remarks about Material Derivative 

• The total derivative operator d/dt is called the material derivative and 
is often given special notation, D/Dt. 

 

• Advective acceleration is nonlinear. It is the source of many 
phenomenon and primary challenge in solving fluid flow problems. 

 

• Provides transformation between Lagrangian and Eulerian frames. 

 

• Other names for the material derivative include:  total, particle, 
Lagrangian, Eulerian, and substantial derivative.  
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Flow Visualization 

Flow visualization is the visual 

examination of flow-field features. 

Important for both physical 

experiments and numerical (CFD) 

solutions. 

Numerous methods 

Streamlines 

Pathlines 

Streaklines 

Refractive techniques 

Surface flow techniques 

While quantitative study of fluid 

dynamics requires advanced 

mathematics, much can be learned 

from flow visualization 
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Streamlines 

• A Streamline is a curve that is 

everywhere tangent to the 

instantaneous local velocity vector. 

• Consider an arc length  

 

 

   must be parallel to the local velocity 

vector  

 

 

• Geometric arguments results in the 

equation for a streamline 

dr dxi dyj dzk  

dr

V ui vj wk  

dr dx dy dz

V u v w
  
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Pathlines 

      , ,particle particle particlex t y t z t

• A Pathline is the actual path traveled 
by an individual fluid particle over 
some time period. 

• Same as the fluid particle's material 
position vector  

 

 

• Particle location at time t:  

 

 

 

• Particle Image Velocimetry (PIV) is a 
modern experimental technique to 
measure velocity field over a plane in the 
flow field. 

 

start

t

start

t

x x Vdt  
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Stream Line  Path Line  

 
 
This is an imaginary curve in a flow 
field for a fixed instant of time, 
tangent to which gives the 
instantaneous velocity at that 
point .  

 
 
This refers to a path followed by a 
fluid particle over a period of time.  

  

 
Two stream lines can never 
intersect each other, as the 
instantaneous velocity vector at 
any given point is unique.  

 
Two path lines can intersect each 
other as or a single path line can 
form a loop as different particles or 
even same particle can arrive at the 
same point at different instants of 
time.  
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Streaklines 

  

 A streak line is the locus of the 

temporary locations of all particles 

that have passed though a fixed point 

in the flow field at any instant of time  

 

 

 Easy to generate in experiments:  dye 

in a water flow, or smoke in an airflow. 


present

inject

t

t
injection dtVxx


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Refractive Flow Visualization Techniques 

• Based on the refractive property of light waves in fluids with different 
index of refraction, one can visualize the flow field: shadowgraph 
technique and schlieren technique. 
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Plots of Data 

• A Profile plot indicates how the value of a scalar property varies 

along some desired direction in the flow field. 

 

• A Vector plot is an array of arrows indicating the magnitude and 

direction of a vector property at an instant in time. 

 

• A Contour plot shows curves of constant values of a scalar 

property (or magnitude of a vector property) at an instant in 

time. 
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Profile plot 

• Profile plots of the horizontal component of velocity 

as a function of vertical distance; flow in the 

boundary layer growing along a horizontal flat plate. 
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Vector plot 
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Contour plot 
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Kinematic Description 

• In fluid mechanics, an element may undergo 

four fundamental types of motion.  

• Translation 

• Rotation 

• Linear strain 

• Shear strain 

• Because fluids are in constant motion, 

motion and deformation are described in 

terms of rates  

• velocity: rate of translation 

• angular velocity: rate of rotation 

• linear strain : rate of linear strain 

• shear strain :  rate of shear strain 
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Rate of Translation  

• To be useful, these rates must be expressed in terms of velocity 

and derivatives of velocity 

• The rate of translation vector is described as the velocity vector.  

In Cartesian coordinates: 

 
V ui vj wk  
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Rate of Rotation 

• Rate of rotation or angular velocity at a point in the xy plane is equal to 

the time derivative of the average rotation angle. 

 

The rate of rotation vector in Cartesian coordinates: 

 
1 1 1

2 2 2

w v u w v u
i j k

y z z x x y


         
         

         
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Linear Strain Rate 

•Linear Strain Rate is defined as the rate of increase in 

length per unit length. 

•Linear strain rate in Cartesian coordinates 

 

 

•Volumetric strain rate in  

   Cartesian coordinates 

 

 

 

, ,xx yy zz

u v w

x y z
  

  
  
  

1
xx yy zz

DV u v w

V Dt x y z
  

  
     

  
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Shear Strain Rate 

• Shear Strain Rate at a point is 

defined as half of the rate of 

decrease of the angle between two 

initially perpendicular lines that 

intersect at a point. 

• Shear strain rate can be expressed 

in Cartesian coordinates as:  

1 1 1
, ,

2 2 2
xy zx yz

u v w u v w

y x x z z y
  

         
         

         
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Strain - rate Tensor 

We can combine linear strain rate and shear strain rate into 
one symmetric second-order tensor called the strain-rate 
tensor. 

1 1

2 2

1 1

2 2

1 1

2 2

xx xy xz

ij yx yy yz

zx zy zz

u u v u w

x y x z x

v u v v w

x y y z y

w u w v w

x z y z z

  

   

  

       
    

        
         
                  

   
                    
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Circulation and Vorticity 
• Circulation :  

   It is defined mathematically as the line integral of the tangential  
 velocity about a closed path (contour) 

 

   V- velocity in the flow field at the element ds 

    - angle between V and tangent to the path (in the positive  
 anticlockwise direction along the path) at the point  

 

• Vorticity  ( or ) : 

   It is also defined as circulation per unit of enclosed area.  

  

   It is a measure of rotation of a fluid particle equal to twice the  
 angular velocity of the fluid particle. 

    

  ds.cosV
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Vorticity and Rotationality 

• The vorticity vector is defined as the curl of the velocity vector 

 

• Vorticity is equal to twice the angular velocity of a fluid particle.  
 

 

• Cartesian coordinates 
 

•  
Cylindrical coordinates 

 

 

• In regions where z = 0, the flow is called irrotational. 

• Elsewhere, the flow is called rotational. 

V 

2 

w v u w v u
i j k

y z z x x y


         
         

         

 1 z r z r
r z

ruuu u u u
e e e

r z z r r




 

       
        

         
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Rotational and Irrotational flow 
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•  Fluid particles within viscous boundary layer near 

 the solid wall are rotational. 

 

•  Fluid particles outside the boundary layer are 

 irrotational. 

 

•  Rotation of fluid elements is associated with 

 wakes, boundary layers, flow through 

 turbomachinery and flow with heat transfer. 
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•When torque is applied to the fluid particle it will 

give rise to rotation; the torque is due to shear stress. 

 

•The shear stress in turn dependent upon the 

viscosity, rotational flow occurs where the viscosity 

effect are predominant. 

 

• In case were viscosity effects are small it can be 

assume as irrotational flow 
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The Stream Function 
• Why do this? 

• Single variable  replaces (u,v).  Once  is known, (u,v) can be 

computed. 

• Physical significance 

• Curves of constant  are streamlines of the flow 

 

• Difference in  between streamlines is equal to volume flow rate 

between streamlines 

 

• It can also be defined as the flux or flow rate between two 

streamlines. The unit of  is m3/s (discharge per unit thickness of flow). 

 

• Existence of  means a possible case of fluid flow 
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The Stream Function 

 

• Consider the continuity equation for  an incompressible 2D 

flow 

 

• Substituting the clever transformation 

 

• Gives 

This is true for any smooth 
function (x,y) 
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Potential function() 

• If the curl of a vector is zero, the vector can be expressed as the gradient of 

a scalar function , called the potential function. 

 

 

 In fluid mechanics, vector     is the velocity vector, the curl of which is the 

vorticity vector   and thus we call  the velocity potential. 

  

 Mathematically  = f(x,y,z,t) ---- unsteady flow 

  = f(x,y,z) ---- steady flow 

 

 




Vthen,0VXifthus0X:identityVector

V


z
w;

y
v;

x
u

)OR(

z
w;

y
v;

x
u






























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• For an incompressible steady flow the continuity equation is  

0
z

w

y

v

x

u
















• Substituting the value of u,v,w in terms of  in above equation, we 

obtain the Laplace equation 

0
zyx

0
zzyyxx

2

2

2

2

2

2






































































• If the velocity potential satisfies the Laplace equation it represents the 

possible steady, incompressible, irrotational flow. Often an irrotational 

flow is known as potential flow MECH-KIOT 



Important Remarks about  and  

“ The stream function is defined by continuity; 

the Laplace equations for  results from 

irrotationality” 

 

“The velocity potential is defined by 

irrotationality; the Laplace equations for  results 

from continuity” 
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Streamline & Equipotential Line relationship  

• Curves of constant values of  define streamlines of the flow . 

• Curves of constant values of  define equipotential lines of the flow. 

• In Planar irrotational flow the streamlines and equipotential lines are 

intersect each other at right angles. 

• Solutions of  and  are called harmonic functions. 

v

u

dx

dy
lineialequipotenttheofslope

)vdyudx(0dlineialequipotentfor

)vdyudx(vdyudxdy
y

dx
x

d

flowsteadyfor)y,x(fbut

0d,ttancons,lineialequipotentFor



















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The Stream Function 
Physical Significance 

• Recall  

  along a streamline 

 Change in  along   streamline is 

zero 
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The Stream Function 
Physical Significance 

• Difference in  between 

streamlines is equal to 

volume flow rate between 

streamlines 
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Cauchy Riemann  Equation 

• From the above discussions the following conclusions are arrived: 

• Potential function exist only for irrotational flow 

• Stream function applies to both rotational and irrotational flows 

• In irrotational flow both  &  satisfy the Laplace equation as they 

are interchangeable. 

 

xy
v

yx
u





















CR Equation 
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Relation between Stream Function and Velocity 
Potential 

• Let two curves  = C  &   = C intersect each other at any point . At the 
point of intersection the slopes are :  
 

 For  = C : slope =  
 
 

 For  = C : slope = 
 

u

v

u

v

y

x

x

y
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1
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y
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

 • It shows that these two sets of curves intersect each 
other orthogonally at points of intersection. 
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RTT, Mass, Bernoulli, and 
Energy Equations 

Chapter 5 



Introduction 
  Reynolds Transport Theorem (RTT) provides a link between the system 

approach and the control volume approach 

 

Three equations which are commonly used in fluid mechanics    

• The mass equation is an expression of the conservation of mass 

principle. 

• The Bernoulli equation is concerned with the conservation of kinetic, 

potential, and flow energies of a fluid stream and their conversion to 

each other. 

• The energy equation is a statement of the conservation of energy 

principle.   
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Objectives 
After completing this chapter, you should be able to  

 

• Understand the usefulness of the Reynolds Transport Theorem 

 

• Apply the mass equation to balance the incoming and outgoing flow rates 
in a flow system. 

 

• Recognize various forms of mechanical energy, and work with energy 
conversion efficiencies. 

 

• Understand the use and limitations of the Bernoulli equation, and apply it 
to solve a variety of fluid flow problems. 

 

• Work with the energy equation expressed in terms of heads, and use it to 
determine turbine power output and pumping power requirements. 
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Reynolds—Transport Theorem (RTT) 

A system is a quantity of 

matter of fixed identity. 

No mass can cross a system 

boundary. 

 

A control volume is a region 

in space chosen for study. 

Mass can cross a control 

surface. 

CV fixed, 

nondeformable 

System 

deformable 
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Reynolds—Transport Theorem (RTT) 

The fundamental conservation laws 

(conservation of mass, energy, and momentum) 

apply directly to systems. 

 

However, in most fluid mechanics problems, 

control volume analysis is preferred over system 

analysis (for the same reason that the Eulerian 

description is usually preferred over the 

Lagrangian description). 

 

Therefore, we need to transform the 

conservation laws from a system to a control 

volume. This is accomplished with the Reynolds 

transport theorem (RTT). 
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Reynolds—Transport Theorem (RTT) 
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Reynolds—Transport Theorem (RTT) 

the time rate of change of the 

property B of the system is equal to 

the time rate of change of B of the 

control volume plus the net flux of B 

out of the control volume by mass 

crossing the control surface. 
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Reynolds—Transport Theorem (RTT) 

The total amount of property B within the control volume must be determined 

by integration: 

Therefore, the system-to-control- volume transformation for a fixed control 

volume: 
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Reynolds—Transport Theorem (RTT) 

Material derivative (differential analysis): 

 

General RTT, nonfixed CV (integral analysis): 

Mass Momentum Energy Angular 
momentum 

B, Extensive properties m E 

b, Intensive properties 1 e 

mV

V

H

 r V

we can apply RTT to conservation of mass, energy, linear momentum, and angular 

momentum. 
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Reynolds—Transport Theorem (RTT) 
• Interpretation of the RTT: 

• Time rate of change of the property B of the system is equal 

to (Term 1) + (Term 2) 

• Term 1:  the time rate of change of B of the control volume 

• Term 2:  the net flux of B out of the control volume by mass 

crossing the control surface 
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Reynolds—Transport Theorem (RTT) 

 

There is a direct analogy between the transformation from 
Lagrangian to Eulerian descriptions (for differential analysis using 
infinitesimally small fluid elements) and the transformation from 
systems to control volumes (for integral analysis using large, 
finite flow fields). 
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Remarks about RTT 
• The RTT is useful for transforming conservation equations from 

their naturally occurring systems forms to their control 

volume.   

• The RTT can be applied to any control volume, fixed, moving, 

or deforming.  

• The RTT has an unsteady term and can be applied to unsteady 

problems.  

• The extensive property B (or its intensive form b) in the RTT 

can be any property of the fluid – scalar, vector, or even tensor.  
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Conservation of Mass 

• Conservation of mass principle is one of the most 
fundamental principles in nature. 

• Mass, like energy, is a conserved property, and it cannot 
be created or destroyed during a process.   

• For closed systems mass conservation is implicit since the 
mass of the system remains constant during a process. 

• For control volumes, mass can cross the boundaries 
which means that we must keep track of the amount of 
mass entering and leaving the control volume. 
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Mass Flow Rate 
• The amount of mass flowing 

through a control surface per 

unit time is called the mass flow 

rate and is denoted  

 

• The dot over a symbol is used to 

indicate time rate of change. 

 

• Flow rate across the entire 

cross-sectional area of a pipe or 

duct is obtained by integration 

 c c

n c

A A

m m V dA   

m
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Conservation of Mass Principle 

• The conservation of mass 
principle can be expressed as 

 

 

 

• Where       and        are the 
total rates of mass flow into 
and out of the CV, and 
dmCV/dt is the rate of 
change of mass within the 
CV. 

CV
in out

dm
m m

dt
 

inm outm

MECH-KIOT 



flowno0cos90if

lowinf0cos,90if

outflow0cos,90if

cosV

cosnVnV












lowinfimummin1cos180if

outflowimummax1cos0if

cosV

cosnVnV










MECH-KIOT 



MECH-KIOT 



Steady—Flow Processes 

• For steady flow, the total 
amount of mass contained in 
CV is constant. 

• Total amount of mass entering 
must be equal to total amount 
of mass leaving 

 

 

• For incompressible flows, 

 

in out

m m 

n n n n

in out
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Mechanical Energy 

• Mechanical energy can be defined as the form of energy that can be 

converted to mechanical work completely by an ideal mechanical device. 

 

• Flow P/, kinetic V2/g, and potential gz energy are the forms of 

mechanical energy emech= P/  + V2/g + gz 

 

• Mechanical energy change of a fluid during incompressible flow becomes  

 

 

 

• In the absence of loses, emech represents the work supplied to the fluid     

(emech > 0) or extracted from the fluid (emech < 0). 

 
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Efficiency 
• Transfer of emech is usually accomplished by a rotating shaft: shaft work  

 

• Pump, fan, propulsion:  receives shaft work (e.g., from an electric motor) and 
transfers it to the fluid as mechanical energy  

 

• Turbine:  converts emech of a fluid to shaft work. 

 

• In the absence of irreversibilities (e.g., friction), mechanical efficiency of a device 
or process can be defined as  

 

 

 

• If mech < 100%, losses have occurred during conversion. 
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The Bernoulli Equation 

• The Bernoulli equation is an 

approximate relation between 

pressure, velocity, and elevation 

and is valid in regions of steady, 

incompressible flow where net 

frictional forces are negligible. 

 

• Equation is useful in flow 

regions outside of boundary 

layers and wakes. 
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The Bernoulli Equation 

• If we neglect piping losses, and have a system without pumps or turbines 

 

 

 

 

 

• This is the Bernoulli equation 

• 3 terms correspond to :  Static, dynamic, and hydrostatic head (or 

pressure).  

 

2 2

1 1 2 2
1 2

1 22 2

P V P V
z z

g g g g 
    

MECH-KIOT 



MECH-KIOT 



Static, Dynamic and Stagnation 
Pressures 
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P is the static pressure (it does not incorporate any dynamic effects); it 
represents the actual pressure of the fluid. This is the same as the pressure used 
in thermodynamics and property tables. 

 

 V2/2 is the dynamic pressure; it represents the pressure rise when the fluid in 
motion is brought to a stop isentropically. 

 

gz is the hydrostatic pressure, which is not pressure in a real sense since its 
value depends on the reference level selected; it accounts for the elevation 
effects, i.e., of fluid weight on pressure. 

 

The sum of the static, dynamic, and hydrostatic pressures is called the total 

pressure. Therefore, the Bernoulli equation states that the total pressure along a 
streamline is constant. MECH-KIOT 
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The Bernoulli Equation 

• Limitations on the use of the Bernoulli Equation 

• Steady flow: d/dt = 0 

• Frictionless flow 

• No shaft work:  wpump=wturbine= 0 

• Incompressible flow:   = constant 

• No heat transfer:  qnet,in=0 

• Applied along a streamline 
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HGL and EGL 
• It is often convenient to plot 

mechanical energy graphically 
using heights to facilitate 
visualization of the various terms 
of the Bernoulli equation. 

 

• Hydraulic Grade Line  

 

 

• Energy Grade Line (or total 

energy) 

P
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Applications Of The Bernoulli Equation 

Water Discharge from a Large Tank Spraying Water into the Air 

MECH-KIOT 



Velocity Measurement by a Pitot Tube 

Siphoning out Gasoline from a Fuel Tank 
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General Energy Equation 

• One of the most fundamental laws in nature is the 1st law of 
thermodynamics, which is also known as the conservation 
of energy principle. 

• It states that energy can be neither created nor destroyed 
during a process; it can only change forms 

• Falling rock, picks up speed as PE is 

converted to KE. 

• If air resistance is neglected,  

   PE + KE = constant 
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General Energy Equation 

• The energy content of a closed system 

can be changed by two mechanisms: 

heat transfer Q and work transfer W. 

 

• Conservation of energy for a closed 

system can be expressed in rate form as 

 

 

• Net rate of heat transfer to the system:  

 

 

• Net power input to the system: 

, ,

sys

net in net in

dE
Q W

dt
 

,net in in outQ Q Q 

,net in in outW W W 
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General Energy Equation 

• Recall general RTT 

 

 

 

• “Derive” energy equation using B=E and b=e  

 

 

 

• Break power into rate of shaft and pressure work 
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General Energy Equation 

• Moving integral for rate of pressure work to RHS of energy 

equation results in: 

 

 

 

 

• Recall that P/ is the flow work, which is the work associated 

with pushing a fluid into or out of a CV per unit mass. 
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General Energy Equation 

• As with the mass equation, practical analysis is often 

facilitated as averages across inlets and exits  

 

 

 

 

• Since e=u+ke+pe = u+V2/2+gz 
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Energy Analysis of Steady Flows 

• For steady flow, time rate of change of the energy content of the CV is 

zero. 

 

• This equation states: the net rate of energy transfer to a CV by heat and 

work transfers during steady flow is equal to the difference between the 

rates of outgoing and incoming energy flows with mass. 
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Energy Analysis of Steady Flows 

• For single-stream devices, mass 
flow rate is constant. 

MECH-KIOT 



Energy Analysis of Steady Flows 
 Divide by g to get each term in units of length 
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Magnitude of each term 

is now expressed as an 
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height of fluid, i.e., 

Head 
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Momentum Analysis of 
Flow Systems 

Chapter 6 



Introduction 

• Fluid flow problems can be analyzed using one of three basic approaches:  
differential, experimental, and integral (or control volume). 

 

• In previous chapter, control volume forms of the mass and energy 
equation were developed and used. 

 

• In this chapter, we complete control volume analysis by presenting the 
linear momentum equation and angular momentum equations. 

 

• Review Newton's laws and conservation relations for momentum. 

• Use RTT to develop linear and angular momentum equations for 
control volumes. 

• Use these equations to determine forces and torques acting on the 
CV. 
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Objectives 

After completing this chapter, you should be able to 

 

• Identify the various kinds of forces and moments acting on a 

control volume. 

 

• Use control volume analysis to determine the forces associated with 

fluid flow. 

 

• Use control volume analysis to determine the moments caused by 

fluid flow and the torque transmitted. 
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Newton’s Laws 
• Newton’s laws are relations between motions of bodies and the forces 

acting on them. 

• First law: a body at rest remains at rest, and a body in motion remains 

in motion at the same velocity in a straight path when the net force 

acting on it is zero. 

 

• Second law: the acceleration of a body is proportional to the net force 

acting on it and is inversely proportional to its mass. 

 

 

 

 

• Third law: when a body exerts a force on a second body, the second 

body exerts an equal and opposite force on the first. MECH-KIOT 



Choosing a Control Volume 
• CV is arbitrarily chosen by fluid dynamicist, 

however, selection of CV can either simplify or 

complicate analysis. 

• Clearly define all boundaries. Analysis is often 

simplified if CS is normal to flow direction. 

• Clearly identify all fluxes crossing the CS. 

• Clearly identify forces and torques of interest 

acting on the CV and CS. 

• Fixed, moving, and deforming control volumes. 

• For moving CV, use relative velocity, 

 

• For deforming CV, use relative velocity all 

deforming control surfaces, 

 
MECH-KIOT 



Forces Acting on a CV 

• Forces acting on CV consist of body forces that act throughout the entire 

body of the CV (such as gravity, electric, and magnetic forces) and 

surface forces that act on the control surface (such as pressure and viscous 

forces, and reaction forces at points of contact). 

• Body forces act on each volumetric 

portion dV of the CV. 

 

• Surface forces act on each portion dA of 

the CS. 
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Body Forces 

• The most common body force is 

gravity, which exerts a downward force 

on every differential element of the CV 

 The different body force 

  

 

• Typical convention is that       acts in 

the negative z-direction, 

 

 

• Total body force acting on CV 
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Surface Forces 
• Surface forces are not as simple to 

analyze since they include both normal 
and tangential components 

 

• Diagonal components xx, yyzz are 
called normal stresses and are due to 
pressure and viscous stresses 

 

• Off-diagonal components xy, xz etc., 
are called shear stresses and are due 
solely to viscous stresses 

 

• Total surface force acting on CS   
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Body and Surface Forces 
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Linear Momentum Equation 

• Newton’s second law for a system of mass m subjected to a force F is 

expressed as 

 

 

 

• Use RTT with b = V and B = mV to shift from system formulation to the 

control volume formulation 
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Angular Momentum 

• Motion of a rigid body can be considered to be the combination of 

• the translational motion of its center of mass (Ux, Uy, Uz) 

• the rotational motion about its center of mass (x, y, z) 

 

• Translational motion can be analyzed with linear momentum equation. 

 

• Rotational motion is analyzed with angular momentum equation. 

 

• Together, the body motion can be described as a 6–degree–of–freedom 

(6DOF) system. 
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Review of Rotational Motion 

 Angular velocity  is the angular 

distance  traveled per unit time, 

and angular acceleration  is the 
rate of change of angular velocity. 
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Review of Angular Momentum 

• Moment of a force: 

 

• Moment of momentum: 

 

• For a system: 

 

 

 

• Therefore, the angular momentum equation can be written as:  

 

 

• To derive angular momentum for a CV, use RTT with              and  MECH-KIOT 



Angular Momentum Equation for a CV 

 

• General form 

 

 

 

• Approximate form using average properties at inlets and outlets 

 

 

 

• Steady flow 
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Dimensional Analysis  
and Modeling 

Chapter 7 



Objectives 

• Understand dimensions, units, and dimensional 

homogeneity 

 

• Understand benefits of dimensional analysis 

 

• Know how to use the method of repeating variables 

 

• Understand the concept of similarity and how to apply it to 

experimental modeling 
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Dimensions and Units 

• Review 

• Dimension:  Measure of a physical quantity, e.g., length, time, mass 

 

• Units:  Assignment of a number to a dimension, e.g., (m), (sec), (kg) 

 

• 7 Primary Dimensions: 

• Mass              M  (kg) 

• Length L  (m) 

• Time T  (sec) 

• Temperature   (K) 

• Current I  (A) 

• Amount of Light C  (cd) 

• Amount of matter N  (mol) 
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Dimensions and Units 

 

• All non-primary dimensions can be formed by a combination 

of the 7 primary dimensions 

 

• Examples 

 

• {Velocity} = {Length/Time} = {L/T} 

 

• {Force} = {Mass Length/Time} = {ML/T2} 
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Dimensional Homogeneity 

Law of dimensional homogeneity (DH):  every additive term in an 

equation must have the same dimensions 

 

Example:  Bernoulli equation 

 

 

• {p} = {force/area}={mass x length/time2 x 1/length2} = {M/(T2L)} 

 

• {1/2V2} = {mass/length3 x (length/time)2} = {M/(T2L)} 

 

• {gz} = {mass/length3 x length/time2 x length} ={M/(T2L)} 
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Nondimensionalization of Equations 

• Given the law of DH, if we divide each term in the equation by a 

collection of variables and constants that have the same dimensions, 

the equation is rendered non-dimensional 

 

 

• In the process of nondimensionalizing an equation, nondimensional 

parameters often appear, e.g., Reynolds number and Froude number 
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Nondimensionalization of Equations 

 

• To nondimensionalize, for example, the Bernoulli equation, the first step is 
to list primary dimensions of all dimensional variables and constants 

 

 

 

 

•  {p} = {M/(T2L)}  {} = {M/L3}  {V} = {L/T} 

•  {g} = {L/T2}  {z} = {L} 

 

• Next, we need to select Scaling Parameters.  For this example, select L, 
U0, 0 
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Nondimensionalization of Equations 

• By inspection, nondimensionalize all variables with scaling 

parameters 

 

 

 

 

 

 

• Back-substitute p, , V, g, z into dimensional equation 

MECH-KIOT 



Nondimensionalization of Equations 

• Divide by 0U0
2 and set * = 1 (incompressible flow) 

 

 

 

• Since g*z* = 1/Fr2, where 
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Nondimensionalization of Equations 

Advantages of non-dimensionalization 

 

• Increases insight about key parameters 

 

• Decreases number of parameters in the problem 

           Easier communication 

Fewer experiments 

Fewer simulations 

 

• Extrapolation of results to untested conditions 
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Dimensionless numbers 

S.
N 

Dimensionless  
numbers 

Symbol Group of 
Variables 

Field of application 

1 Reynolds number   
(IF/VF) 

Re Laminar viscous flow in confined 
passages ( where viscous effects are 
significant) 

2 Froude number 
(IF/GF) 

Fr Free surface flows ( where gravity 
effects are important) 

3 Euler number 
(IF/PF) 

Eu Conduit flow ( where pressure 
variations are significant) 

4 Weber number 
(IF/STF) 

We Small surfaces waves, capillary and 
sheet flow ( where surface tension 
is important) 

5 Mach number 
(IF/EF) 

M High speed flow (where 
compressibility effects are 
significant) 



VL

Lg

V

/p

V

L/

V



/K

V
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Dimensional Analysis 

• Nondimensionalization of an equation is useful only when the equation is 

known! 

• In many real-world flows, the equations are either unknown or too 

difficult to solve. 

• Experimentation is the only method of obtaining reliable information 

• In most experiments, geometrically-scaled models are used (time and 

money). 

• Experimental conditions and results must be properly scaled so that 

results are meaningful for the full-scale prototype. 

• We need to introduce a powerful technique called Dimensional 

Analysis 
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Dimensional Analysis and Similarity 

Primary purposes of dimensional analysis  

 

• To generate nondimensional parameters that help in the design of 

experiments (physical and/or numerical) and in reporting of results. 

 

• To obtain scaling laws so that prototype performance can be predicted 

from model performance. 

 

• To predict trends in the relationship between parameters. 
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Dimensional Analysis and Similarity 

Various methods 
 

1) Buckingham’s Pi theorem 

2) Rayleigh’s method 

3) Bridgman’s method 

4) Matrix-Tensor method 
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Buckingham’s Pi theorem 

• If there are n variables ( dependent and independent) in a 

dimensionally homogeneous equation and if these variables 

contain m fundamental dimensions ( such as M,L,T,), the 

variables are arranged into (n-m) dimensionless terms. 

• These dimensionless terms are called as Pi theorem 

 
),.....,,(f n21 
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The Method Of Repeating Variables And The Buckingham Pi 
Theorem 
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Guidelines for choosing repeating parameters in step 4 
of the method of  repeating variables 
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Guidelines for manipulation of the ∏’s resulting from the method of 
repeating variables 
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Example 
• Step 1:  List relevant parameters. 

z=f(t,w0,z0,g)  n=5 

 

• Step 2:  Primary dimensions of each 
parameter 

 

 

 

• Step 3:  As a first guess, reduction j is set 
to 2 which is the number of primary 
dimensions (L and t).  Number of 
expected 's is k=n-j=5-2=3 

 

• Step 4:  Choose repeating variables w0 
and z0 

Ball Falling in a Vacuum 
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Example, continued 

• Step 5: Combine repeating parameters into products with each of the 

remaining parameters, one at a time, to create the ’s.   

• 1 = z w0
a 1 z0

b 1 

• a1 and b1 are constant exponents which must be determined. 

• Use the primary dimensions identified in Step 2 and solve for a1 and b1. 

 

 

• Time equation: 

 

• Length equation: 

 

 

• This results in 
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Example, continued 

• Step 5: continued   

• Repeat process for 2 by combining repeating parameters with t 

• 2 = t w0
a 2 z0

b 2 

 

 

• Time equation: 

 

 

• Length equation: 

 

 

• This results in 
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Example, continued 

• Step 5: continued   

• Repeat process for 3 by combining repeating parameters with g 

• 3 = g w0
a 3 z0

b 3 

 

 

Time equation: 

 

 

Length equation: 

 

 

This results in 
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Example, continued 

• Step 6:  

• Double check that the 's  are dimensionless. 

• Write the functional relationship between 's 

 

 

• Or, in terms of nondimensional variables 

 

 

• Overall conclusion:  Method of repeating variables properly predicts the 
functional relationship between dimensionless groups. 

• However, the method cannot predict the exact mathematical form of 
the equation. 
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Similarity 

• Geometric Similarity - the model must be the same shape as the 

prototype.  Each dimension must be scaled by the same factor.  

 

• Kinematic Similarity - velocity at any point in the model must be 

proportional . 

 

• Dynamic Similarity - all forces in the model flow scale by a constant factor 

to corresponding forces in the prototype flow. 

 

• Complete Similarity is achieved only if all 3 conditions are met.  
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In a general flow field, complete similarity between a 

model and prototype is achieved only when there is 

geometric, kinematic, and dynamic similarity. 
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Incomplete Similarity 

It is not always possible to match all the ’s of a model 

to the corresponding ’s of the prototype, even if we 

are careful to achieve geometric similarity. This 

situation is called incomplete similarity. 

In such case we need to extrapolate model tests to 

obtain reasonable full- scale predictions 

MECH-KIOT 



Flow in Pipes 

Chapter 8 



Objectives 

• Have a deeper understanding of laminar and turbulent flow in pipes 

and the analysis of fully developed flow. 

 

• Calculate the major and minor losses associated with pipe flow in 

piping networks and determine the pumping power requirements. 
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Examples 

• Distribution of water 

• Blood flow through arteries and veins 

• Oil and natural gas pipelines 

• Heating and cooling systems of building 
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• In general, flow sections of circular 

cross section are referred to as pipes 

(especially when the fluid is liquid) 

 

• flow sections of non circular cross 

section are referred to as ducts 

(especially when the fluid is gas). 

 

• Smaller diameter pipes are usually 

referred as tubes. 
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Introduction 

• For pipes of constant diameter 

and incompressible flow 

 

• Vavg stays the same down 

the pipe, even if the velocity 

profile changes 

 

• Conservation of Mass 

same 

Vavg Vavg 

same 
same 

MECH-KIOT 



Introduction 

• For pipes with variable diameter, m is still the same due to 

conservation of mass, but V1 ≠ V2 

D2 

V2 

2 

1 

V1 

D1 

m m 
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Laminar and Turbulent Flows 
• Critical Reynolds number (Recr) for 

flow in a round pipe 

• Re < 2300  laminar 

• 2300 ≤ Re ≤ 4000  
transitional  

• Re > 4000  turbulent 

• Note that these values are 
approximate. 

• For a given application, Recr depends 
upon 

• Pipe roughness 

• Vibrations 

• Upstream fluctuations, 
disturbances (valves, elbows, etc. 
that may disturb the flow) 

Definition of Reynolds number 
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Laminar and Turbulent Flows 
• For non-round pipes, define the hydraulic 

diameter  

Dh = 4Ac/P 

• Ac = cross-section area 

• P = wetted perimeter 

 

• Example:  open channel 

• Ac = 0.15 * 0.4 = 0.06m2 

• P = 0.15 + 0.15 + 0.4 = 0.7m 

• Don’t count free surface, since it does 

not contribute to friction along pipe 

walls! 

• Dh = 4Ac/P = 4*0.06/0.7 = 0.34m 

What does it mean?  This 

channel flow is equivalent to a 

round pipe of diameter 0.34m 

(approximately). MECH-KIOT 



The Entrance Region 

• Consider a round pipe of diameter D.  The flow can be 

laminar or turbulent.  In either case, the profile develops 

downstream over several diameters called the entry length Lh.  

Lh/D is a function of Re. 

Lh 
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Hydrodynamic Entry Length 

• The hydrodynamic entry length is the distance from the pipe 

entrance to a point where the wall shear stress (and thus the 

friction factor) reaches within about 2% of fully developed 

value. 

  Lh,laminar = 0.05DReD 

  Lh,turbulent = 1.359DReD
. 25 

  Beyond a pipe length of 10D; Lh,turbulent   = 10D 
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Entry Length 

MECH-KIOT 



Fully Developed Pipe Flow 
 Comparison of laminar and turbulent flow 

• There are some major differences 

between laminar and turbulent 

fully developed pipe flows 

Laminar 

• Can solve exactly 

• Flow is steady 

• Velocity profile is parabolic 

• Pipe roughness not important 

• It turns out that Vavg = 1/2Umax 

and u(r)= 2Vavg(1 - r2/R2) 

MECH-KIOT 



Fully Developed Pipe Flow 

Turbulent 

• Cannot solve exactly (too complex) Flow is unsteady (3D swirling eddies), 

but it is steady in the mean 

• Mean velocity profile is fuller (shape more like a top-hat profile, with very 

sharp slope at the wall)  

• Pipe roughness is very important Vavg 85% of Umax (depends on Re) 

• No analytical solution, but there are some good semi-empirical expressions 

that approximate the velocity profile shape.   

Instantaneous 
profiles 
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Fully Developed Pipe Flow  
Friction Factor 

 

 

 

 

 

• Our problem is now reduced to solving for Darcy friction factor f 

• Recall 

• Therefore 

• Laminar flow:  f = 64/Re (exact) 

• Turbulent flow: Use charts or empirical equations (Moody Chart, a 

famous plot of f vs. Re and /D) 

But for laminar flow, roughness 
does not affect the flow unless it is 
huge 
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Head Loss 

• In the analysis of piping system pressure losses are commonly 

expressed in terms of the equivalent fluid column height  called head 

loss hL. 

 

 

• It also represents the additional height that the fluid needs to be 

raised by a pump inorder to overcome the frictional losses in the 

pipe 
gd2

fLV

g

P
h

2

avgL

L 




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Hagen – Poiseuille’s Law 
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Turbulent flows in pipes  
Eddies 
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Fully Developed Pipe Flow - Friction Factor 

• Moody chart was developed for circular pipes, but can be used for non-

circular pipes using hydraulic diameter 

 

• Colebrook equation is a curve-fit of the data which is convenient for 

computations 

 

 

• Both Moody chart and Colebrook equation are accurate to ±15% due to 

roughness size, experimental error, curve fitting of data, etc. 

 

• S.E. Haaland equation  which are 2%  error of  the Colebrook eqaution. 
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Types of Fluid Flow Problems 

• Explicit relations have been developed which eliminate iteration.  They are 

useful for quick, direct calculation, but introduce an additional 2% error 

• Swamee and Jain Relation 
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Minor Losses 

• Piping systems include fittings, valves, bends, elbows, tees, inlets, exits, 

enlargements, and contractions. 

 

• These components interrupt the smooth flow of fluid and cause 

additional losses because of flow separation and mixing. 

 

• We introduce a relation for the minor losses associated with these 

components 
• KL is the loss coefficient.   

• Is different for each component. 

• Is assumed to be independent of Re. 

• Typically provided by manufacturer 

or generic table MECH-KIOT 
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Minor Losses 

• Total head loss in a system is comprised of major losses (in the pipe 

sections) and the minor losses (in the components) 

 

 

 

 

 

• If the piping system has constant diameter 

i pipe sections j components 
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Piping Networks and Pump Selection 

• Two general types of networks 

 

• Pipes in series 

• Volume flow rate is constant 

• Head loss is the summation of 

parts 

 

 

• Pipes in parallel 

• Volume flow rate is the sum of the 

components 

• Pressure loss across all branches is 

the same 
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Piping Networks and Pump Selection 

• For parallel pipes, perform CV analysis between points A and B 

 

 

 

 

 

• Since p is the same for all branches, head loss in all branches is the same 
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Piping Networks and Pump Selection 

• Head loss relationship between branches allows the following ratios to be 
developed 

 

 

 

• Real pipe systems result in a system of non-linear equations.  Very easy to 
solve with EES! 

• Note:  the analogy with electrical circuits should be obvious 

• Flow flow rate (VA) : current (I) 

• Pressure gradient (p) : electrical potential (V) 

• Head loss (hL): resistance (R), however hL is very nonlinear 
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Piping Networks and Pump Selection 

• When a piping system involves pumps and/or turbines, pump and 
turbine head must be included in the energy equation 

 

 

 

 

• The useful head of the pump (hpump,u) or the head extracted by 
the turbine (hturbine,e), are functions of volume flow rate, i.e., they 
are not constants. 

• Operating point of system is where the system is in balance, e.g., 
where pump head is equal to the head losses. 
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Chapter 09 
Boundary layer theory 



Objectives 

• To know about the development of boundary layers in 

external and internal flows 

• Predict boundary layer thickness and other boundary 

layer properties. 

• Demonstrate the phenomena of turbulence, separation 

and recirculation of flow  
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Boundary layer theory 

• The narrow region, near the solid surface, over which velocity 

gradient and shear stresses are large is known as boundary 

layer. 

 

• The study of velocity gradients, shear stresses, forces and 

energy loss in the boundary layer is called as boundary layer 

theory. 

 

• A layer of fluid near the surface of the body in which the 

velocity changes from zero on the surface to the free-stream 

value.  
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• Prandtl’s insight into this phenomenon and his subsequent 

development of boundary layer theory are milestones in the 

development of fluid mechanics 

 

• the thickness of the boundary layer increases in the 

downstream direction 

 

• just downstream of the nose of the plate the boundary layer is 

observed to be laminar, but at some point in downstream 

transition occurs and the boundary layer becomes turbulent. 
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Boundary Layer (BL) Approximation 

• BL approximation bridges 

the gap between the Euler 

and NS equations, and 

between the slip and no-

slip BC at the wall. 

 

• Prandtl (1904) introduced 

the BL approximation 
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Boundary Layer Region over a Flat Plate 
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• Laminar boundary 

layer near the nose of 

the plate 

• the transition into a 

 turbulent boundary 

layer 
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Boundary Layer Region through a Pipe 
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Boundary Layer Region over a Sphere 
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Boundary layer 

Boundary layer comprises of two regions 

Region I 

 The fluid exerts shear stress on the boundary exerts equal and 

opposite force on the fluid known as  shear resistance. A thin 

layer adjoining the boundary is called boundary layer where 

viscous shear takes place. 

Region II 

 The region outside the boundary layer where the flow 

behaviour is quite like that of an ideal fluid when the potential 

flow theory is applicable. 
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Terms associated with boundary layer 

• Edge of the plate facing the direction of the flow is called 
leading edge 

 

• Rear edge is called trailing edge. 

 

• Near the leading edge of the plate boundary layer is laminar 
and velocity distribution  is parabolic. 

 

• Thickness of the boundary layer  is increase from the leading 
edge as more and more fluid is slowed down by the viscous 
boundary, becomes unstable and breaks into turbulent 
boundary layer over a transition region. 
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Characteristics of boundary layer 

• Thickness of Boundary layer() is arbritarily defined as the 
distance from the boundary in which the velocity reaches 
99% of velocity of the stream (u=0.99U) 

• Definition above gives an approximate value of the B.L.T 
and hence it is generally termed as Nominal thickness of 
the Boundary layer. 

•  increases  as the distance from leading edge x increases  

•  decreases as U increases 

•   increases  as kinematic viscosity increases  

• When U increases in the downward direction ,boundary 
layer growth is reduced 
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• When U decreases in the downward direction, flow near the 

boundary is further retarded, boundary layer growth is faster 

and susceptible to separation. 

• The various characteristics of the boundary layer on the flat 

plate are governed by inertial and viscous forces. 

• If Re < 5 x 105 boundary layer is laminar (velocity 

distribution is parabolic) 

• If Re> 5 x 105 boundary layer is turbulent on that portion 

(velocity distribution follows log law or a power law) 
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Displacement Thickness 

• Displacement thickness * is the 

imaginary increase in thickness of 

the wall (or body), as seen by the 

outer flow, and is due to the effect 

of a growing BL. 

• Expression for * is based upon 

control volume analysis of 

conservation of mass 
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The displacement thickness represents the 
amount that the thickness of the body 
must be increased so that the fictitious 
uniform inviscid flow has the same mass 
flow rate properties as the actual viscous 
flow. MECH-KIOT 



Momentum Thickness 

• Momentum thickness  is another 

measure of boundary layer thickness. 

• Defined as the loss of momentum flux 

per unit width divided by U2 due to the 

presence of the growing BL. 

• Derived using CV analysis. 
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Problem 

 If the velocity profile in a laminar boundary layer is 

approximated by a parabolic profile  

 

 

  

 Where u is the velocity at y and u→ U  as   y → . Calculate 

the displacement thickness and the momentum thickness 
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Laminar & Turbulent Boundary Layer 

MECH-KIOT 



Navier Stoke Equation 
Cartesian Coordinates 
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