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Introduction & Basic Concepts
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All matter consists of two states, solid and fluid

there are two classes of fluids, liquids and gases
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Fluid Mechanics
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Gas quids Statics
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. Water, Oils, Stability
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Flows

Compressible/
Incompressible

Steady/Unsteady



Basic concept

Equation of Motion \ T

* Newton’s Second Law
F = ma

or, equivalently,

» momentum principle:

h

\> &‘r‘—ﬁn

force = rate OFChange of H=£ ofential energy _ energy per unit weight
momentum mg
° mechanical €nerqgy p energy  mass
o ower = =

PI’II’)CIPIC: time time

work done = Change of

kinetic + potential enerqy Force Jip.
Power

rate of doing work (i.e. power) =

. R H
force x velocity power =pQg
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Work or Work done
(Nm)

Work = force x parallel distance
W=Fxd

Sl unit: J - joules (1 joules = 1Nm = 1kgm?/s?)

|
|
:

p : Piston
:
|

Force applied
| Working fluid PP

|

Cylinder -

M,

Ny
V&L JLY

W

" A force that acts A pushing force
opposite to the does no work
direction of motion of  ifthe wall does
an object does not move.
negative work

‘¢ No work (W=0) will be
done when the
displacement equals  Apushing force
zero or when the force does work

is perpendicular to the ifthe wall moves
displacement. even alitle. A

{ \
[
0

\':', . “|_."_‘i

Work or Not Work?

Example Direction of force Direction of motion Doing work?

.
MECESIO

In each of the four situations shown, is work being done or not?




POWER

+ Power is defined as ability to do work.

Jet

+ SI Unit : Watt (W)

+ Formula: Work | Joule

Cower = — P

fime —————i second

w

P="__
ds A"
s Force - (/.llsp/a(:emenf T
fime Vpismn
Power = Force ~ velocity System
(gas in cylinder)
System boundary, A

(@) (b)

The pressure force acting on (a) the
moving boundary of a system in a
piston-cylinder device, and (b) the
differential surface area of a system

Engine | of arbitrary shape.
Energy transmission through rotating shafts

. ) . CH-KIOT
IS commonly encountered in practice.




Fluids

Fluids may be defined as substance which is capable of flowing.
Fluids flow because of differences in pressure.

A fluid is a substance that flows under the action of shearing

forces. If 3 fluid is at rest, we know that the forces on it are in
balance.

A qas is a fluid that is easily compressed. It fills any vessel in
which it is contained.

A liquid is a fluid which is hard to compress. A given mass of
liquid will occupy a fixed volume, irrespective of the size of the

CO nta l n e l‘. Ax Recall that shear strain s T sepics
b is y = Ax/Ay Fnlu. F, results
| 5y : in shear stress 7

Fluid mechanics is the study of fluids

* at rest (fluid statics) kg Fluid

—7 sample at 7,

*in motion (fluid dynamics) wecuxor |




Rigid upper plate in contact Tangential force, F.,

with sample over area, A results in shear Normal
£ : stress, 7. defined as to surface
T F/A I Force acting
F on area dA

Tangent
to surface

Normal stress: o =

(A) Stationary rigid bottom plate

Shear stress: T =

SlmE|m

Recall that shear strain

5= Force. F, results

in shear stress 7

—

Fluid sample
at tz = fl

>

Fluid

sample at Axy > Axy

Same Fand 7

For a fluid, we
find 7 o dy/dt.




Uniform
approach
velocity, V

Relative
velocities
of fluid layers

Zero

YYVYYVYY

velocity

at the
surface
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No-slip condition: A fluid in direct
confact with 3 solid “sticks” to the
surface due to viscous effects

Responsible for generation of wall shear
stress 1,,, surface drag D= [ 1,, dA, and
the development of the boundary layer

Important  boundary condition in
formulating initial boundary value
problem (IBVP) for analytical and
computational fluid dynamics analysis



Properties of Fluids



Propeitics of o Systom
* Any characteristic of 3 system is called 3

property.
* Familiar: pressure P, temperature 7,

volume V, and mass m.

* Less familiar: viscosity(n), thermal
conductivity (k;), modulus of -
elasticity (k), thermal expansion Extensive properties are those whose
coefficient (o), Coefficient of volume value depends on the size of the system.

. A Examples: Total mass, total volume,
expansion(B) vapor pressure, surface e it ol e

tension(o). Extensive properties per unit mass are

» Intensive properties are independent of called specific properties. Examples
the mass of the system. Examples: include specific volume v = 1/m and
’cempera’cure, pressure, an d den sity. speciﬁ'c total enerqy e=£/m.
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Cont. .

 In a3 given flow situation,

the determination of the properties of the fluid either by
experiment or theory as 3 function of position and time is
considered to be the solution to the problem

*In almost all cases, the emphasis is on the space-time
(x,y,z;t) distribution of the fluid properties



Denailly, and Specific foavity

- Density is defined as the mass per unit volume p = m/V. Density has units of
kg/m3

» Specific volume is defined as v =1/p = V/m.
* For 3 gas, density depends on temperature and pressure.

- Specific gravity, or relative density is defined as the ratio of the density of 3
substance to the density of some standard substance at 3 specified
temperature (usually water at 4°C), i.e, SG=p/py,0. SG is a dimensionless

quantity.

» The specific weight or weight density is defined as the weight per unit volume,
i.e., p,= pg where g is the gravitational acceleration. g, has units of N/m?.
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Vafo@ Pressure and Coviotion

» Vapor Pressure P, is defined as the pressure exerted by its
vapor in phase equilibrium with its liquid at a given
temperature

If P drops below P,, liquid is locally vaporized,
creating cavities of vapor.

Vapor cavities collapse when local P rises above P,
Collapse of cavities is a violent process which can
damage machinery.

Cavitation is noisy, and can cause structural
vibrations.

Cavitation Number Ca= Pa —Pv
1 2
2PV
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Cavitation must avoided in flow systems since it reduces
performance, generates annoying vibrations and noise and
causes damage to equipment .

The large number of bubbles collapsing near the solid surface
over 3 long period of time M3y cause erosion, surface pitting,
fatique failure and the destruction of the components or
machinery.

The presence of cavitation in 3 flow system can be sensed by its
characteristic tumbling sound



» Total energy E is comprised of numerous forms: thermal, mechanical,
kinetic, potential, electrical, magnetic, chemical, and nuclear.

» Units of energy are joule (J) or British thermal unit (BTU).

* Microscopic energy
» Internal energy u is for a non-flowing fluid and is due to molecular
activity.
» Enthalpy h=u+Pv is for 3 flowing fluid and includes flow energy (Pv).
* Macroscopic enerqy
* Kinetic energy ke=V2/2
* Potential energy pe=gz

» In the absence of electrical, magnetic, chemical, and nuclear enerqy, the
total energy is egopn,=h*V2/2+gz.



How docs fluicl volume change with P and T 7

Fluids expand as 71 or P |
Fluids contractas 7| or P1
» The amount of volume change is different for different fluids

» Need fluid properties that relate volume changes to changes in
Pand T.
_(ep) _ (ep
- Coefficient of compressibility a _V(El 7 (%l

ﬁzl(@j :_1(5_%’)
- Coefficient of volume expansion = vlat ), plat ),

 Combined effects of Pand 7can be written as dV{%jpdT +(gﬂpl dP



Co a%um&nf of %WW&'M?

» The fluids act like elastic solids with respect to pressure.

It is also called as bulk modulus of compressibility or bulk
modulus of elasticity

» A larger value of k indicates that a large change in pressure is
required to cause very small change in volume and thus a
fluid with a large k is essentially incompressible.

- coefficient of compressibility of an ideal gas ki @s= P (Pa)



74«07%«%4/ Co W@M&M 7

» The inverse of the coefficient of compressibility is called the isothermal

compressibility
a=Lo_1{ov) _ 1o
k vier), pler

» The isothermal compressibility of a fluid represents the fractional change
in volume or density corresponding to a unit change in pressure



* Viscosity is a property that
represents the internal resistance
of 3 fluid to motion.

» The force 3 flowing fluid exerts on

a body in the flow direction is
called the drag force.
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Viscosity

. Viscosi’c?/ is the property of 3 fluid, due to cohesion and interaction between
molecules, which offers resistance to sheer deformation. Different fluids

deform at different rates under the same shear stress.

Molecule Ca
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» Fluid with 3 high viscosity such as syrup, deforms more slowly than fluid with
a low viscosity such as water.

—_—

{ \ '.
— 6 ;
g A
% - — s % MECH-KIOT Viscosity of Water and Honey



» To obtain 3 relation for viscosity,
consider 3 fluid layer between two
very large parallel plates separated

" by a distance ¢
Area d * Definition of shear stress is © = F/A.
N N u=V / Force F
p Velocity v * Using the no-slip condition,
\T 5/ ¢ u(0) = 0 and u(t) =V, the velocity
— - profile and gradient are u(y)= Vy/t
M u=0 N\ and du/dy=V/t
Velocity profile
5 e Shear stress for Newtonian fluid: ©
u(y) = =V
¢ = u du/dy

* p is the dynamic viscosity and has
units of kg/mrs, Pass, or poise.
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* Dynamic Viscosity

u= 1 (du/dy)
Shear stress, T
» Dynamic viscosity is also called as absolute ol Viscosity = Slope
viscosity or coefficient of viscosity. : a
,U — = —-—
du /l dy b
a
. . . . h) Water
« Unit of dynamic viscosity kqg/ms or Ns/m
. b
or poise
Poise = 0.1 Ns/m? Air

Rate of deformation, du/dy

* Kinematic viscosity v = dynamic viscosity /

density
Unit of Kinematic Viscosity is m2/s
1 Stoke =1 cm?/s = 10*m?/s

MECH-KIOT



T?%’W’ of flnids

Shear _
Smss I Ideal Bln_gham
r plastic
Plastc Diilatant Shear _
P stiess T Rheopectic
4 T
4 .
F; Mewtonian Common
! fluids
!
Yield Pseudoplasiic
stress
Congtant Thixctropic
strain rate
__I:l Shear strain rate @8 —= il Time —=

dr

Fluids which do not follow the linear law of viscosity are
called nonnewtonian and also called rheological fluids .
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Types of Non-Newtonian fluids

- Dilatant, or shear-thickening fluid increases resistance with increasing applied
stress. Ex: Solutions with suspended starch and sand

»  Pseudoplastic, or shear-thinning fluid decreases resistance with increasing

stress. Ex: paints , polymer solutions

» Ifthe thinning effect is very strong, as with the dashed-line curve, the fluid
is termed plastic. The limiting case of a plastic substance is one which requires
a finite yield stress before it begins to flow.

*  Bingham plastic
Flow behaviour after yield may also be nonlinear. An example of 3 yielding
fluid is toothpaste, which will not flow out of the tube until 3 finite stress is
applied by squeezing




» A further complication of nonnewtonian behavior is the transient effect
shown in Fig below.

—— Eheopectic

™
L

Shear I

Common

fluids

Constant Thixotropic

streun rate
i Time —=

»  Some fluids require a gradually increasing shear stress to maintain a constant
strain rate and are called rheopectic.

» The opposite case of a fluid which thins out with time and requires decreasing
stress is termed thixotropic.
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Vorriction of Vw/ooaaf? wilt Tm‘fmﬂma

Viscosity
4

T—
/J Adr at 20°C and 1 atm:
| u=183x 10" kg/m - s

_ 5.2
I\ v =1.52x 100" m/s Liqiﬂds

I| Aar at 20°C and 4 atm: t

.' u=183x 107 keg/m - s

| _ 5.2 '.

_ v = 0380 x 107 m=/s D '
—_— Va Gases

Temperature
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* In Liquids, viscosity is caused by
the cohesive forces between the
molecules.

»  Viscosity of liquids decrease with
increase in temperature. This is
because in a liquid the molecules
possess more enerdy at high

liquids can
oppose cohesive intermolecular
forces more strongly. As 3 result,
the energized liquid molecules
can move more freely

temperature, so

* In gases, Viscosity is caused by the

molecular collisions between

molecules.

The intermolecular forces  are
negligible, so the gas molecules at
high temperature move randomly at
high velocities. As a3 result molecular
collision per unit volume per unit
time increases.

The viscosity of a fluid is directly related to the pumping
power needed to transport 3 fluid in pipe or to move 3

body through a fluid.
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W&a Tension

— A molecule
on the surface

— A molecule
inside the

. liquid

MECH-KIOT



P@ﬂ%&ﬂé 5 %th«é%/

Drop of blood forms a hump on 3 horizontal glass.
Water droplets from rain

A drop of mercury forms a near perfect square
Dew hang from leaves of trees

A soap released into air

Liquid fuel injected into the engine
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* In all these observations, the liquid droplets behave like small spherical
balloons filled with liquid and the surface of the liquid acts like a stretched
elastic membrane under tension.

» The pulling force that causes this tension acts parallel to the surface and it is
due to cohesive forces between the molecules of the fluid.

» Repulsive forces from interior molecules causes the liquid to minimize its
surface area and attain a spherical shape

» The magnitude of this force per unit length is called surface tension os
(N/m). This effect is also called surface energy.



(27R)o;

(r R2)AP droplet

(a) Half a droplet

Droplet: QaR)7, = (TR)AP e — APy = Pi— P, =

do
R

¥

Bubble: 227R)o; = (TRH)APyypie = APyyope = P, — P, =
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Meniscus
| » Capillary effect is the rise or fall of 3
l
\Q_T liquid in a small-diameter tube.
Meniscus |
h T 0 e The curved free surface in the tube is
h<0 called the meniscus.
Water Mercury |
* Water meniscus curves up because
2aRo, water is 3 wetting fuid.
\ ‘/’/4 * Mercury meniscus curves down
; e ET because mercury is 3 nonwetting
h
R Auid.
Liquid W . bal ib
Force balance can describe
[ o

magnitude of capillary rise.



WWM o1 mMaﬂ'W&

o
4 N The strength of capillary effect is
'

b quantified by contact angle

Water Mercury

(a) Wetting (b) Nonwetting It is defined as the angle that the tangent
fluid fluid to the liquid surface makes with solid
surface at the point of contact

A liquid is said to wet the surface

if ¢<90° and
Capillary rise/drop

not to wet the surface when ¢ > h = 20,cos ¢ / pgR

90°
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» Pressure is defined as a normal force
exerted by 3 fluid per unit area.

» Unit of pressure is N/m?, which is also

called as pascal (Pa).

e Since the unit P3 is too small for

pressures  encountered in  practice,
kilopascal (1 kPa = 103 Pa) and
megdapascal (1 MPa =106 Pa) are

commonly used.

» Other units include bar, atm, kqf/cm?,

Ibf/in2=psi.

MECH-KIOT

Normal

to surface

T Force acting
Py F on area dA

T
Lo Rl

' : //,/,,
—;-‘4 Tangent

o :
4 to surface
dA

L= <~ : //'
F,
Normal stress: o =
dA
F,
dA

Shear stress: T =



ﬁ/&o Uit e, gage, and vacuunm presvontes

Absolute

abs

vacuum

gage

e — — — — — — —

atm

Absolute

MECH-KIOT

vacuum



» Actual pressure at 3 give point is called the absolute pressure.

* Most pressure-measuring devices are calibrated to read zero in

the atmosphere, and therefore indicate gage pressure, P,..=P..,

dage
- Pa‘cm‘

» Pressure below atmospheric pressure are called vacuum pressure,

Pvaczpa‘cm - Pabs'



Barometers

The pressure at A is the same as the
pressure of the surrounding air, since it's
at the surface. A and B are at the same
pressure, since they are at the same height.
The pressure at C is zero, since 3 vacuum
has no pressure. The pressure difference
from Bto C is pgh (where p is the
density of mercury), which is the pressure
at B, which is the pressure at A, which is
the air pressure. Thus, the height of the
barometer directly measures air pressure.
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Pressvre it a Poind

* Pressure at any point in 3 fluid is the same in all
directions. (Pascal’s Law) P, =P =P,

*Pressure has a magnitude, but not 3 specific
direction, and thus it is 3 scalar quantity.

Small f F Large

piston ¢ ' piaton
' CSA=A
CSA=a| ¢ v
~

Hydraulic Jack




» Pressure applied to 3 confined
fluid increases the pressure
throughout by the same
amount.

* In picture, pistons are at same
height:
P1:P2_>F1_F2 F2:A2

=—= >
A A R OA

» Ratio A2/AT is called ideal
mechanical advantage

MECH-KIOT



Voriction of Pressnre wilt Deyith

 In the presence of a gravitational field,
pressure increases with depth because

more fluid rests on deeper layers.

» To obtain 3 relation for the variation of
pressure with depth, consider

rectanqular element

. * Force balance in z-direction gives
st
E 1 = > F,=ma, =0

i P,AX— PAX — pgAxAz =0
AP =F, —F = pgAz = y Az




51/@4&»@7'1'4«? Pressunre oﬁamgwfﬁxwmgﬂ a cobrmn of
A

Known pressure p,

7=z
Oil,p
2y ¢ Py =Py =Pl — 5y
Water, p, : \
bé 2y W Py— D> _—p,ﬂf"ﬁ—zz}
Glycerin, p,,
. : e = 7 —Za)
24 Py—Py=—Pse(z,—25)

, Mercury, p,, N " — 7))
Zs Ps=P4=—Pytlis -y

Sum = ps—p,




Voariction of Pressunre wilt @%A«

» Pressure in a fluid at rest is independent of the shape of the
container.

* Pressure is the same at all points on 3 horizontal plane in 3
given fluid.

Py=Pp=Pc=Pp=Pp=Pp=P;=Pyy+pgh
Py#P;
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Atmospheric pressure: Points a, b, ¢, and d are at equal

N depths in water and therefore have
_._Fﬂ'”’ﬂdf-- H'---__ . .
Free surface - — identical pressures.
Water
b Ill d . .
i C
Depth 4 e\ d Point D has a different pressure
\ from A, B, and C because it is not
Mercury
T connected to them by a water path
A B C D
Depth 2 . . . .

Ligquid surface

PN

1
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Pressure measuring devices based on liquid columns in
vertical or inclined tubes are called manometers

Piezometer Tube U-Tube Manometer
Open
J o ) S
|/A-+\ T J
n h \_,/ 'rI {
Ve ‘< e
i "di+_ | _y 4 fluid) )
N

ps = vih pat vihy — ¥y =0



Differential U-Tube Manometer

—(3)

Pa — Yihy — vohy + 7/1(/7-1 + hz) — B

l - [ ] "
Flow A N .. B |
—- —
) A )
Flow nozzle
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Ihclined-Tube Manometer

[ncdined-Tulie mamonmetens cin fe waed o medsne amall
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Type of Fluids



ﬁémm%ioa?ﬁ}on of Flows

Viscous vs. Inviscid Regions of Flow
Internal vs. External Flow
Compressible vs. Incompressible Flow
Laminar vs. Turbulent Flow

Steady vs. Unsteady Flow

One~, Two-, and Three-Dimensional Flows



Ideal fluids & Real Fluids

» Ideal fluids have no viscosity — there is no internal friction or loss of
mechanical energy.

* No such fluid exists, but many flows can be approximated as ideal if
viscous forces are small and do not cause major flow phenomena such as
boundary-layer separation.

» Real fluids have non-zero viscosity

» They satisfy the no-slip condition at solid boundaries. i.e. the (relative)
velocity at the boundary is zero.

1deal raal

il

s : & SRS



Viscous vo. trvisecid Regions of Hlow

» Regions where frictional effects
are significant are called viscous
regions. They are usually close
to solid surfaces.

» Regions where frictional forces
are small compared to inertial or
pressure forces are called inviscid

T

Inviscid flow

region

region

!

Inviscid flow
region
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Developing velocity Fully developed

/ profile, V(r, z) velocity profile, V(r) ¢ lnternal ﬂOWS al"e dOminaJ(ed
/ by the influence of viscosity
throughout the flow field

1
Al

'y

o .

A A

VHNHHHHJ

I\

For external flows, viscous effects
are limited to the boundary layer
and wake.

MECH-KIOT



ﬂomf/bmw& (22 7%00%%%%& f Yow

» A flow is classified as incompressible if the density remains nearly
constant.

» Liquid flows are typically incompressible.
» Gas flows are often compressible, especially for high speeds.
» Mach number, Ma = ¢/ a is 3 good indicator of whether or not
compressibility effects are important.
* Ma<0.3: Incompressible
* Ma<1: Subsonic
* M3 =1: Sonic
* Ma>1: Supersonic
* M3 »1: Hypersonic



(A)

Molecular
spacing doesn’t
change in
a liquid

(B)

Gas

~_
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Molecular
spacing changes
significantly
in a gas




Lominar va. Turbwberd Plow

Laminar: highly ordered fluid motion e .
with smooth streamlines. , SS—

—— Transitional: a flow that contains

- both laminar and turbulent regions

Transitional
T —
Turbulent: highly disordered fluid motion i =
characterized by velocity fluctuations and
eddies. ——— | e ————
— L
Turbulent

Reynolds number, is the key parameter in determining whether flow is [aminar or
turbulent.
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St maly_ w. Wwwl?_ Flow

+ Steady implies no change at a point
with time. )
N _ 9p _
ot ot
»  Unsteady is the opposite of steady.
— Transient usually describes 3
starting, or developing flow.
— Periodic refers to 3 flow which
oscillates about a mean.

»  Unsteady flows may appear steady if
“time-averaged”

MECH-KIOT



One-, 7;00-, ond Three-DPinensional f Yows

» Velocity vector, U(x,y,zt)= [Ux(x,y,z,t),Uy(x,y,z,t),Uz(x,y,z1)]

» Lower dimensional flows reduce complexity of analytical and
computational solution

» Change in coordinate system (cylindrical, spherical, etc.) may facilitate
reduction in order.

» Example: for fully-developed pipe flow, velocity V(r) is a function of
radius r and pressure p(z) is a function of distance z along the pipe.

Developing velocity Fully developed
profile, V(r, z) velocity profile, V(r)
= - L
/
> = e
I’T - ] == =
e e e _
R - e >
> = R ——
-

e MECH-KIOT




Fluid Statics
ﬁﬁaﬂ% 03



Plorid Hoftics

* Fluid Statics deals with problems associated with fluids at rest.

* In fluid statics, there is no relative motion between adjacent
fluid layers.

» Therefore, there is o shear stress in the fluid trying to deform
it.
» The only stress in fluid statics is

* Normal stress is due to pressure

» Applications: Floating or submerded bodies, water dams and
gates, liquid storage tanks, etc.



< 8
s o 1
h

FR = (Po +pgh)ab

b b |

l |

| |
\ ' ‘s '
E————
Fp =[Py + pgis + bi2) sinflab Fp =[Py +pgls+ bi2)]ab
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77‘?0@047' e 7 orces on Ploane W&%

atm

[\

I-—»
|

——
|

g
|

[

AVA
\ i

[
—

A/
X

(a) P, considered

Patm + p g h

I

-

(b) P, subtracted

pgh

» On 3 plane surface, the
hydrostatic forces form 3 system
of parallel forces

» For many applications,
magnitude and location of
application, which is called
center of pressure, must be
determined.

* Atmospheric pressure P, can
be neglected when it acts on
both sides of the surface.



Lesnllond Force

P-=P,,, P=P,+pgysinf

0

Centroid

Center of pressure
Plane surface

of area A

Pressure
dlstrlbutlon

Pressure prism

\\%Of volume V
P=Py+ pgh \

Plane surface

V= d\/ P(IA:FR

» The magnitude of F, acting on a plane surface of a
completely submerged plate in a homogenous fluid is equal
to the product of the pressure P at the centroid of the
surface and the area A of the surface



(:26271;12921 tagf jz;%b€244>tdviwe>

Center of

ressure )
p Centroid

of area

* Line of action of resultant force
Fo.=PcA does not pass through the
centroid of the surface. In general, it
lies underneath where the pressure is

higher.

« Vertical location of Center of Pressure
is determined by equating the
moment of the resultant force to the
moment of the distributed pressure
force.

Ixx,C

yp — yC + yCA
tabulated for

* loc IS simple

deometries.
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h

FR = (Po +pgh)ab

b b |

l |

| |
\ ' ‘s '
E————
Fp =[Py + pgis + bi2) sinflab Fp =[Py +pgls+ bi2)]ab
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Moment of

Product of

Geometry Centroid Inertia Inertia Area
Ixx Ixy
¥ L. ]y y bLj
X 2 /2 _ 0 b-L
' 12
| [
4
TR 2
0.0 0 TR
,_1
bL’ b’L’ b-L
W % |-
3,73 36 72 2
4R dn8 TR
0.a=—" R |—-— 0
3T 8 9T 2




Moment of

Product of

3(b+b,)

36(b+ b )

Geometry Centroid Inertia Inertia Area
Ixx Ixy
L bL:‘ b (l‘l — ES}LJ 1 -
a=-— — —b-
3 36 72 2
4R no4) ) 14, TR’
- et LS I el I®
I 'lI16 oT 8 9m 4
h(b+2b,) [0 (b +4bb, +b,) !
= 1 — 0 (b+b )=
2




:‘L} 4
bf2
c
b < -
X
bi2
all al2
A=ab, I, = ab312
() Rectangle
:‘L} L
2b{3
x
B3
+
all al2
A=abl2 I, = ab3/36

id) Triangle

A=mR% I__=gR%Y

L

i) Circle

A =mab, ‘!.rr.r.l:' = mabiid

ic) Ellipse

g N\

Y

A=mRY2 I

1
|

T

L =0.10975TRY

O

(@) Semicircle
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A=mabl2, I, -=0.1 09757 ab’
i ) Semiellipse



77‘_70@047 e forces on Corved Wow
L

Horizontal projection \

/ of the curved surface \ o :
Al-—ft————(—(———___ B Liquid |
L : block
I
= F.
: 1- [ - 2
I 1 |
P |
. b I\ “

I Vertical projection

|
| 1 |
| Feo

| |

Curved of the curved surface

surface

Free-body diagram
of the enclosed
liquid block

* Fr on a curved surface is more involved since it requires
integration of the pressure forces that change direction along
the surface.

* Easiest approach:  determine horizontal and vertical
components F and F,, separately.
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Horizontal force
component on the curved

Curved

SUI‘F&CC : FHzFx W?CE

: /
Vertical force component ) |
on the curved surface: _..4: 1,
Fy=F,+w T
Magnitude of Resultant ;;T
hydrostatic force

F. = \/ FH2 + FV2 When a curved surface 1s above the

liquid, the weight of the liquid and the
vertical component of the hydrostatic
tano = (J force act in the opposite directions.
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ﬁ?ﬂéwaf e f vrces on Curved Wow

» Horizontal force component on curved surface: F;=F,. Line of
action on vertical plane gives y coordinate of center of pressure
on curved surface.

» Vertical force component on curved surface: Fy=F W, where
W is the weight of the liquid in the enclosed block W=pqV. x
coordinate of the center of pressure is a3 combination of line of
action on horizontal plane (centroid of are3) and line of action
through volume (centroid of volume).

» Magnitude of force Fp=(F,2+F,2)"2 & Angle of force is 3 = tan-
1CF/Fy)



Pressure
forces

\

Resultant

force
N

Circular /
surface

I i Oil
b
| FR]
l -
|=

) \ Water
b, . \\ FRE
1=

\

The hydrostatic force acting on a cir-

cular surface always passes through

the center of the circle since the pres-

sure forces are normal to the surface
and they all pass through the center.

MECH-KIOT

Hydrostatic force on a surface
submerged in a multilayered fluid can
be determined by considering parts of

the surface in different fluids as
different surfaces.



Buogancy and S%&'M?

» Buoyant force Fy: The force offered by the fluid that
tends to lift the body.

» Buoyant force is caused by the increase in pressure in

a fluid with depth.



p (density of the object)

object
Buoyancy is due to the fluid W‘"

displaced by a body.

The farces at work in buoyancy .
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A flat plate of uniform

5 PrsA thickness h submerged in a
, liquid parallel to the free
ot X surface
7
Pre(s + A
FH — Flmllnm o Flc_}p — p,"n&?(s T /I)A o P;‘ L‘_E;’.S'A — p;’ LQ/IA — pf'g"!

Buoyant force acting on the plate is equal to the
displaced by the plate

¢ It is independent of distance (s) of the body from the free surface
¢ It is independent of the density of the solid body
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\ Floating
P | body

IK

Fluid

'\ Suspended body
> =P7 ] (neutrally buoyant)

Vsub Pave, body

FB =W — Pr8 Vsub — Pave. body gvtotal ~ Vtotal Pr

For Floating bodies , the weight of the entire body
must be equal to buoyant force, which is the weight
of the fluid whose volume is equal to the volume of
the submerged portion of,the floating body.




Stalility, of Immersed Bodics

Fluid

F G
IB W‘
GeB

W

Weight
(a) Stable (b) Neutrally stable (c¢) Unstable

- Rotational stability of immersed bodies depends upon relative
location of center of gravity G and center of buoyancy B.

« Gbelow B . stable
* Gabove B : unstable
* Gcoincides with B : neutrally stable.



Stability of Foting Bodies

Metacenter \

Overturning
/’ moment

' , Restoring
‘ / moment

(a) Stable (b) Stable (c¢) Unstable



Fluid Kinematics

Chogitn, O



74«7@00&»&( 1ron

Kinematics means the study of motion without considering the
forces and moments that cause the motion.

Kinematics involves position, velocity, and acceleration, not
{OYCC.

Fluid kinematics is the study of how fluids flow and how to
describe fluid motion without considering the forces and
moments that cause the motion.

Fluid kinematics describing how a fluid particle translates,
distorts, and rotates, and howto visualize flow fields.



* Topics

» Scalar and Vector Fields, Flow Field

» Descriptions of fluid flow.

« Material Derivative or Substantial Derivative

« Fundamentals of Flow visualization.

« Plots of fluid flow data.

» Fundamental kinematic properties of fluid motion and deformation.



% velol K’%M iAion

The representation of

Particle A at .
time  + ¢ fluid parameters  as

functions of the
spatial and temporal

/ / F coordinates is termed
/ a field representation

of the flow

Particle path

Particle A at
time ¢

Panticle Locations in Trmas of
prerien veclor
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Sealor ond Veclor Fielols

* Scalar: Scalar is a quantity which can be expressed by a single number representing
its magnitude.
Example: mass, density and temperature.

* Scalar Field :If at every point in a region, a scalar function has a defined value,
the region is called 3 scalar field.
Example: Temperature distribution in a rod.

» Vector: Vector is 3 quantity which is specified by both magnitude and direction.
Example: Force, Velocity and Displacement.

» Vector Field :1f at every point in a region, a vector function has 3 defined value,
the region is called a vector field.

Example: velocity field of 3 flowing fluid .

MECH-KIOT



Descripilions of Flnid Flow

» There are two general approaches in analyzing fluid mechanics
problems

Eulerian
Description

Lagrangian
Description

MECH-KIOT
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Laograngion Descrigion

» Lagrangian description of fluid flow tracks the position and velocity of individual
particles. (eq. Brilliard ball on a pooltable.)

« Motion is described based upon Newton’s laws of motion.

- Difficult to use for practical flow analysis.
* Fluids are composed of billions of molecules.
* Interaction between molecules hard to describe /model.

» However, useful for specialized applications
» Sprays, particles, bubble dynamics, rarefied gases.
* Coupled Eulerian-Lagrangian methods.

- Named after Italian mathematician Joseph Louis Lagrange (1736-1813).



» Eulerian description of fluid flow: 3 flow domain or control volume is defined by which
fluid flows in and out.

» We define field variables which are functions of space and time.
» Pressure field, P=P(x,y,zt)

—

+ Velocity field, " =V(xy,zt)  V=u(xy,zt)i +v(xy,z,t) f+w(x,y,z,t)k
o Acceleration field, @=a(xy.zt)  a=a(xy.zt)i +a,(xy.zt)j+a,(xy.z,t)k
These (and other) field variables define the flow field.

» Well suited for formulation of initial boundary-value problems (PDE’s).

« Named after Swiss mathematician Leonhard Euler (1707-1783).



Eulerian and Lagrangian descriptions of temperature of a flowing
fluid.

Location O:
T'=Tlxqg, yo, )~ T Particle A:
_ Iy =T,
J-I:IJI.
|} |_ -.l.
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In the Eulerian method one may
attach a temperature-measuring
device to the top of the chimney
(point O) and record the
temperature at that point as a
function of time. At different times
there are different fluid particles
passing by the stationary device.
Thus, one would obtain the
temperature, 7, for that location
(x = X,, Y=Y,, Z= Z,) 3s a function of
time. Thatis, T=T (x,, y,, z.,t)

iﬂg@m«gim @W@w

In the Lagrangian method, one
would attach the temperature-
measuring device to a particular fluid
particle (particle A) and record that
particle’s temperature as it moves
about. Thus, one would obtain that
particle’s temperature as a function

of time,

T,=Ta(t)



Uecelerition f Lelol

» Consider 3 fluid particle and Newton’s second law,
F i =M .8

particle particle =" particle

» The acceleration of the particle is the time derivative of the

particle’s velocity.  _ dV 4,
aparticle o dt

\7particle :V(Xparticle (t)’ yparticle (t)’ Zparticle (t))

- However, particle velocity at 3 point is the same as the fluid
velocity,
« To take the time derivative of, chain rule must be used.

8\7 dt 8\7 prarticIe 8\7 dyparticle 8\7 dzparticle
aparticle = + T T
otdt ox dt oy dt oz dt

—_




* Since dXparticle dy particle dz particle

= U, =V,
dt dt dt

=W

aparticle o
ot ox oy oz

* In vector form, the acceleration can be written as

Ei(x,y,z,t)= dﬁ: aﬁ+(ﬂ _-)_'

V.V
dt Ot

* First term is called the local acceleration and is nonzero only for unsteady
flows.

» Second term is called the advective or convective acceleration and accounts for
the effect of the fluid particle moving to a new location in the flow, where the
velocity is different.



W iAerial Derivilive

The material derivative D/Dt is defined by
following a fluid particle as it moves
throughout the flow field.

MMMMMMMMM



Woiferial Perivitive

Vury, 1) g
Particle A at
time ¢ Walry, 1)
U1y, 1)

Particle path Iy

.\-‘
&l x4(1)

/ y4(1)
V= Vu(ra 1) = Va[xa(2). ya(1), 24(2), 1]

B dVA 8_VA 8VA dxA GVA dyA n 6VA dZA

a,r) = = + +
all) dt ot dxodt  dy dt 9z dt



oV, oV, v, v,
ay = tuy—— +tv ——tw
A o Yox M oy Aoz

the above equation is valid for any particle, we can drop the reference to particle A

and obtain the acceleration field from the velocity field as

oV oV oV oV
a=—+tu_—+tovo_—+tw
ot 0X dy 02

ou du u u
=——tu_—+tov_—+w

y
| ot 0X Jy 02
Jdv Jv Jdv Jv
a, = — T U~ TV —TW
ot 0X Jy 0z
ow ow ow ow
a. = + u + v + w
) 6 l- 8Nf%H—KIOT 8y az



The above result is often written in shorthand notation as
DV

q = —
Dt

where the operator

DO _a) ), @) i)
Dt ot ! 0Xx ady " 0z

is termed the material derivative or substantial derivative

An often-used shorthand notation for the material derivative operator is

Dt Jt

POy v

the rate of change of temperature 3s

DT oT dT ol aT T i
—=—+4u—+v—+w—=—+V-VT
Dt at ox dy az dt

MECH-KIOT




Lemanrks aboid iAerial Pervivitive

» The total derivative operator d/dt is called the material derivative and
is often given special notation, D/Dt.

» Advective 3acceleration is nonlinear. It is the source of many
phenomenon and primary challenge in solving fluid flow problems.

» Provides transformation between Lagrangian and Eulerian frames.

» Other names for the material derivative include: total, particle,
Lagrangian, Eulerian, and substantial derivative.



Flow Visnabiyation

Flow visualization is the visual
examination of flow-field features.
Important  for both  physical
experiments and numerical (CFD)
solutions.
Numerous methods

Streamlines

Pathlines

Streaklines

Refractive techniques

Surface flow techniques

While quantitative study of fluid
dynamics requires advanced

mathematics, much can be learned

from flow visualization

MECH-KIOT



Streambines

Point (x + dx, y + dy) ‘7

* A Streamline is a curve that is
everywhere  tandent to  the

instantaneous local velocity vector.

» Consider an arc length

dF = dxi + dyj + dzk

dr must be parallel to the local velocity
vector

—_

V =ui +Vj +wk

* Geometric arguments results in the

equation for 3 streamline
i B} dx ay  dz

MECH-KIOT V u V W




* A Pathline is the actual path traveled

Fluid particle at 7 = £, by an individual fluid particle over
N some time period.
. &
lia_ﬂlh_nf o « Same as the fluid particle’s material
! ..’ position vector

Fluid particle at r = ¢
. ] o (Xparticle (t)’ yparticle (t)’ Zparticle (t))
Fluid particle at some

intermediate time * Particle location at time t:

+_[th

t

Start
start

Particle Image Velocimetry (PIV) is 3
modern experimental technique to
measure velocity field over 3 plane in the

flow field.
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Stream Line Path Line

This is an imaginary curve in a flow
field for a fixed instant of time,
tangent to which gives the
instantaneous  velocity at that
point.

This refers to 3 path followed by a
fluid particle over a period of time.

Two stream lines can never
intersect each other, as the
instantaneous velocity vector at
any given point is unique.

Two path lines can intersect each
other as or a single path line can
form 3 loop as dif?:eren’c particles or
even same particle can arrive at the
same point at different instants of
time.




Streallines

lnye or smoke A streak line is the locus of the
Injected fluid particle temporary locations of all particles
Streakline that have passed though 3 fixed point

in the flow field at any instant of time

Easy to generate in experiments: dye

in 3 water flow, or smoke in an airflow.

T —
present
Vdt

t

X= Xinjection +_[ _
inject

MECH-KIOT



f@prﬂ' e Tlow Vw«wa«@af ron 7W7ww
» Based on the refractive property of light waves in fluids with different

index of refraction, one can visualize the flow field: shadowgraph
technique and schlieren technique.

MECH-KIOT



(/2 of DA

» A Profile plot indicates how the value of a scalar property varies
along some desired direction in the flow field.

» A Vector plot is an array of arrows indicating the magnitude and
direction of 3 vector property at an instant in time.

» A Contour plot shows curves of constant values of a scalar
property (or magnitude of 3 vector property) at an instant in
time.

MECH-KIOT
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() u (B u

» Profile plots of the horizontal component of velocity
as 3 function of vertical distance; flow in the
boundary layer growing along a horizontal flat plate.
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“Symmetry plane”
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.+ Influid mechanics, an element may undergo
: four fundamental types of motion.

 Translation

N * Rotation
o  Linear strain

 Shearstrain

« Because fluids are in constant motion,
| motion and deformation are described in
terms of rates

; » velocity: rate of translation

/ T » angular velocity: rate of rotation
« linear strain : rate of linear strain
« shear strain : rate of shear strain

MECH-KIOT



gaf& of Teomoletion

» To be useful, these rates must be expressed in terms of velocity
and derivatives of velocity

» The rate of translation vector is described as the velocity vector.
In Cartesian coordinates:

V =ul +Vv] + Wk




£ oifle of LoAoilion

» Rate of rotation or angular velocity at 3 point in the xy plane is equal to
the time derivative of the average rotation angle.

The rate of rotation vector in Cartesian coordinates:

0 =— = | +— — J+=| —— K
2\ oy oz 2\ 07 OX 2\ OX oy

C=AxF | ' I
I I|"' 0y I .-lF
[ Line b LN
1 - '||
i F
i Ll 1'1'
______ _I |lll_lIl | II. .-.-'
— | I L .-_l'
A | i N
. | . |
- [ i Line b\ | 1I'~~"",:,:
i a
|
‘L"- P "; | :

¥
E Line a | Line a
Flnid element

at ime 7,
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ﬂ»z'/n/&m %m/n faf e

e Linear Strain Rate is defined as the rate of increase in
ength per unit length.

* Linear strain rate in Cartesian coordinates

i + ':]i'l“‘dﬁr
ou oV oW R |
& :_18 :_’gZZ:_ a gy
*ox Y @y o0z . gﬂl‘///g'
::F#;PI i, + ﬂm— | dit
« Volumetric strain rate in ,%\ e+ 3, 5
. i ol diu__,,..r—""'*
Cartesian coordinates Lﬂ“‘” .
1 DV ou v ow :
_—ZEXX+£W+gZZ: + +



S‘/v&m %Wv gafa

| d

» Shear Strain Rate at 3 point is “»~ “ g~
defined as half of the rate of

decrease of the angle between two Line b—) |
initially perpendicular lines that ;
intersect at 3 point. vl o =2 uid element

_______ k at time 1,
» Shear strain rate can be expressed . | '
ne b |
|
= Line a q
Fluid element .‘I'L'
at time f|

in Cartesian coordinates as: .
1({ ou ov l(ﬁw 8uj 1 8V OW
E,=—| —+— |6, == +— |,&, =
Y 2loy ox olox ez )" 2 az oy

L
—————+——— —
L
]
Y
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We can combine linear strain rate and shear strain rate into
one symmetric second-order tensor called the strain-rate

tensor.
[
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CircnboAion and %Wm’f?

 Circulation :

It is defined mathematically as the line integral of the tangential
velocity about 3 closed path (contour)

= § V c0os 0.dy/- velocity in the flow field at the element ds

0 - angle between V and tangent to the path (in the positive
anticlockwise direction along the path) at the point

* Vorticity (§orQ) :

It is also defined as circulation per unit of enclosed area.

It is a measure of rotation of a fluid particle equal to twice the
anqular velocity of the fluid particle.
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%%M7 and fofaﬁowm&%}

» The vorticity vector is defined as the curl of the velocity vector é_; —VxV

» Vorticity is equal to twice the anqular velocity of a fluid particle. é_; — 20

* Cartesian coordinates
(2 (D) (0
oy oz 0z OX oX oy
Cylindrical coordinates

~ o(ru
§=G8uz—auejé’ﬁ(aur—auzjé’ﬁ (ru,) ou, s
r o oz oz or or ol

» In regions where z = O, the flow is called irrotational.

« Elsewhere, the flow is called rotational.



?ofaf vonal and 74/&07(017(' conal /éow

Fluid particles not rotating

[rrotational outer flow region
Velocity profile

Rotational boundary layer region

Wall Fluid particles rotating

MECH-KIOT



o  Fluid particles within viscous boundary layer near
the solid wall are rotational.

*  Fluid particles outside the boundary layer are
irrotational.

e  Rotation of fluid elements is associated with

wakes, boundary layers, flow through
turbomachinery and flow with heat transfer.



» When torque is applied to the fluid particle it will
give rise to rotation; the torque is due to shear stress.

* The shear stress in turh dependent upon the
viscosity, rotational flow occurs where the viscosity
effect are predominant.

* In case were viscosity effects are small it can be
assume 3s irrotational flow



The Stream % unclion
»  Why do this?

* Single variable y replaces (u,v). Once vy is known, (u,v) can be
computed.

»  Physical significance
« Curves of constant y are streamlines of the flow

- Difference in y between streamlines is equal to volume flow rate
between streamlines

+ It can also be defined as the flux or flow rate between two
streamlines. The unit of y is m3/s (discharge per unit thickness of flow).

Existence of w means a possible case of fluid flow



The Strecm fmﬂ:&on

» Consider the continuity equation for an incompressible 2D

flow ou Ov

| — 0
Or Oz
» Substituting the clever transformation
0 0
u = 8—1'& V= — a_w
* Qives J v
82¢ 821/} —0 This is true for any smooth

85(383; - 8983; function y(x,y)
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Pirerdial fwwﬂ:z}on ( (I) )

» If the curl of 3 vector is zero, the vector can be expressed as the gradient of
a scalar function ¢, called the potential function.

Vector identity: V X Vé=0 thus if V X V=0,then V=V¢

In fluid mechanics, vector s the velocity vector, the curl of which is the
vorticity vector § and thus we call ¢ the velocity potential.

Mathematically ¢ = f(x,y,z,t) ~—-- unsteady flow
d = F(x,y,z) ~—-—- steady flow U= op . V= 06 . W = o6
OX oy 0z
(OR)
_@ C V= _@ © W _@
OX oy 0z

U=



»  Foran incompressible steady flow the continuity equation is

6u6v6w
6x6yaz

»  Substituting the value of u,v,w in terms of ¢ in above equation, we
obtain the Laplace equation

i(_a_‘l’)J,i _ % +i(_@)_
ox\ ox) eyl oy) oz\ oz)

0% 0% 9% _
OX° 6y2 0z°

»  If the velocity potential satisfies the Laplace equation it represents the
possible steady, incompressible, itrotational flow. Often an irrotational
flow is known as potential flow <>



" The stream function is defined by continuity;
the Laplace equations for vy results from

irrotationality”

"The velocity potential is defined by
irrotationality; the Laplace equations for ¢ results

from continuity”

MMMMMMMMM
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« Curves of constant values of y define streamlines of the flow .
» Curves of constant values of ¢ define equipotential lines of the flow.

» In Planar irrotational flow the streamlines and equipotential lines are
intersect each other at right angles.

« Solutions of y and ¢ are called harmonic functions.

For equipotentialline ¢=constant, dp =0
but ¢="1(x,y)for steady flow

dd = a—(I)dx +@dy = —udx —vdy =—(udx + vdy )
OX oy

forequipotentiallined$¢ =0=—(udx + vdy )

slope of theequipotentiallined—y I
dx \' I



The %&a/n«v ? wnlrion

Phopical Significance

+ Recll
along a streamline
d
% :g ‘ vdmiudy—o
oY oY
I dr + — 5y dy =0
dip = 0

.. Change in y along streamline is
zero
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The %&wm« % unlion
7347_4430@«4 ng%&&m&&

* Difference in y between
streamlines is equal to
volume flow rate between

streamlines

VA= VB =1 —

MECH-KIOT
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- From the above discussions the following conclusions are arrived:

»  Potential function exist only for irrotational flow

»  Stream function applies to both rotational and irrotational flows

- In irrotational flow both y & ¢ satisfy the Laplace equation as they

are interchangeable. op oY
U=-—=
oX oYy
CR Equation
op oW



E&M'{/OW between %&mw ?Wvﬂ:z}on A V&Zomf?
PiAeritial

* Lettwo curves y = C & ¢ = C intersect each other at any point . At the
point of intersection the slopes are :

0¥
For¢=C:slope= O _ox _=-V__V

ox 0¥ u
oy
0

Fory = C: slope = O _ ox_—u_u
ox 0o -—v v
oy

oy u_ v « It shows that these two sets of curves intersect each
A~ -1 other orthogonally at points of intersection.



RTT, Mass, Bernoulli, and
Energy Equations

Chogitor 5



Ditrodunction

Reynolds Transport Theorem (RTT) provides a link between the system
approach and the control volume approach

Three equations which are commonly used in fluid mechanics
» The mass equation is an expression of the conservation of mass
principle.
»  The Bernoulli equation is concerned with the conservation of kinetic,

potential, and flow energies of 3 fluid stream and their conversion to
each other.

» The energy equation is a statement of the conservation of energy
principle.
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After completing this chapter, you should be able to

Understand the usefulness of the Reynolds Transport Theorem

»  Apply the mass equation to balance the incoming and outgoing flow rates
in 3 flow system.

»  Recognize various forms of mechanical energy, and work with energy
conversion efficiencies.

»  Understand the use and limitations of the Bernoulli equation, and apply it
to solve a variety of fluid flow problems.

+  Work with the energy equation expressed in terms of heads, and use it to
determine turbine power output and pumping power requirements.



""""" -
— - ¥ \
“ " Sprayed mass \

e T
_
- -
- F
- -

A system is 3 quantity of
matter of fixed identity.

No mass can cross 3 system
boundary.

System |
!

I"’s_-_‘._"._.____ -
! ll
|

A control volume is a region

in space chosen for study. System CV fixed,

Mass can cross 3 control deformable hondeformable

SUY\CaCC.

MECH-KIOT



fa?méoé'—- ﬁa/rwya«oﬂ' Theorem (ETT)

The  fundamental  conservation  laws
(conservation of mass, energy, and momentum)
apply directly to systems.

However, in most fluid mechanics problems,
control volume analysis is preferred over system
analysis (for the same reason that the Eulerian
description is usually preferred over the
Lagrangian description).

Therefore, we need +to transform the
conservation laws from 3 system to a control
volume. This is accomplished with the Reynolds
transport theorem (RTT).



a?méoé'—- ﬁa/n/.ayoo/ﬂ' Theorem (ETT)

Control volume at time { + Af
(C'V remains fixed in time)
System {material volume)
and control volume at time ¢
ishaded region)

System af time i + Af
(hatched region)

Inflow during Ar

Outflow during Af

Attime £: Sys=CV
Attime £ +An Sys=CV - I1+1I
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B

E¥E. f

= By, (the syvstem and C% concide at time §)
B:l:.-‘::_.l+.'l'|.l = Bow, sear — Broiart By sias

Boye, r+Ar — E:F:-'s.r Boy srae — Bow By 4 A By o4 oar

LY Y ¥ At

dB . A8 . .
- = — -Ein -+ -E-:-l.ll

By jrne = bymy (a = bl."tl'-'"']_.:+.-:-..| = by, V, At A

By svne = Bampg pa, = BapaVypae = Bapa Vo Ar A,
: By oy . by V) ArA
Bin = By = lim —-—= lim At = by Vi Ay
: : : By oy , byp Vs mﬂz
B,,=8;= .:.l.:l—]}-ln As - ﬂ]}l_?n Ar = bypaVs As

-
— byp VA + byp VoA,
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Ea?wo lols— ﬁm«/.a]aoﬁ Theorem (ETT)

the time rate of change of the - SN
property B of the system is equal to \\‘\“_‘k ) /
the time rate of change of B of the U
control volume plus the net flux of B s 1) ) ) \
out of the control volume by mass A
crossing the control surface. o

S[m = Em” — Sm = pf}":} -ndA (inflow if negative)

.{15
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fa?m lolp— ﬁm«/)ﬁoﬂ' Theorem (ETT)

The total amount of property B within the control volume must be determined
by integration:

By = |' pb d\/
= Cxl:r
Therefore, the system-to-control- volume transformation for 3 fixed control
volume:

{IBH‘-.-'H d i i —
— = — pb d\VV + ( pbV - n dA
dt dr . Jes

t
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f@?m lols— ﬁmwfoﬁ Theorem (ETT)

Db ©0b
Dt ot

Material derivative (differential analysis): + (f'. ﬁ)b

General RTT, nonfixed CV (integral analysis):

{'IIBWh d | ] — s
— = pb d\V + r pbV, - n dA
dt dr | .. 1
CV S5
Mass | Momentum Energy Angular
momentum
B, Extensive properties m mV E H
b, Intensive properties 1 vV e (TX q)

we can apply RTT to conservation of mass, enerqy, linear momentum, and anqular
momentum.

MECH-KIOT



Bogrolds Tianopoct Theosom (BTT)
* Interpretation of the RTT:

- Time rate of change of the property B of the system is equal
to (Term 1) + (Term 2)

» Term 1: the time rate of change of B of the control volume

» Term 2: the net flux of B out of the control volume by mass
crossing the control surface

dB O .
P — b d¥- + bV.ndA
dt CV ot (p -[ p




: . | he material derivative is used
Lagrangian D Eulerian S S
[oter ok — v — 1 3. ia to transtorm from Lagrangian to
description Dt description Fulerian descriptions for

1 | \ differential analvsis
|

Differential analysis I

Integral analysis |
l I he Reynolds transport

: Control theorem is uscd to transform
System : from system to control volume
i RTT \(‘llll]-lc . : dysicill L .. 1 tLC
analysis tor integral analysis

analysis

There is 3 direct analogy between the transformation from
Lagrangian to Eulerian descriptions (for differential analysis using
infinitesimally small fluid elements) and the transformation from

systems to control volumes (for integral analysis using large,
finite flow fields).
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» The RTT is useful for transforming conservation equations from
their naturally occurring systems forms to their control
volume.

» The RTT can be applied to any control volume, fixed, moving,
or deforming.

* The RTT has an unsteady term and can be applied to unsteady
problems.

» The extensive property B (or its intensive form b) in the RTT
can be any property of the fluid - scalar, vector, or even tensor.



Conservition of Pass

- Conservation of mass principle is one of the most
fundamental principles in nature.

* Mass, like energy, is a conserved property, and it cannot
be created or destroyed during a process.

* For closed systems mass conservation is implicit since the
mass of the system remains constant during a process.

* For control volumes, mass can cross the boundaries
which means that we must keep track of the amount of
mass entering and leaving the control volume.



Control surface \

m=[om= [ pv,dA
A A

The amount of mass flowing
through a control surface per
unit time is called the mass flow
rate and is denoted m

The dot over 3 symbol is used to
indicate time rate of change.

Flow rate across the entire
cross-sectional area of 3 pipe or
duct is obtained by integration



Conservilion of P oo pmmya/&

» The conservation of mass
principle can be expressed as

* Where m. and m . are the
total rates of mass How into
and out of the CV, and

m;,, — My, = Amgcy (kg) dmc,/dt s the rate of

change of mass within the

CV.
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‘AnE \7-ﬁ=‘\7”ﬁ\cose
g =\ cos 0
Control 1T 0 < 90,cos0 > 0= outflow
e CK i£0> 90,050 < 0=> inflow
T if0 = 90c0s0 = 0=> noflow

Control surface (CS)

\7-ﬁ=‘\7”ﬁ\cose
=\ Cc0s 0
1ITO=0=cos0 =1= maximum outflow

1TO0=180=cosO=—-1=minimum inflow



C

dBS},S — d
dt dt

B=m

|

dmgy - d
dt dt

(Y

C5

J pde+J pb(V+ 1) dA

The conservation of mass equation
1s obtained by replacing B in the
Reynolds transport theorem by
mass m, and b by 1 (m per unit
mass = m/m = 1).



S%aal?.-ﬂow Processes

my =2 kg/s my=3kg/s « For steady flow, the total
J l | | l |_ amount of mass contained in
LSS S “| CV is constant.

|

|
i : - Total amount of mass entering
| @Y : must be equal to total amount
| i of mass leaving
|
| |

— — — — — — — — — — — — — o—| —

|l| ZmZm

out

my=m; +m,=135Kkg/s e For mcompreSSlble ﬂows,

ZVnAq 2 VoA

out



Wechanical 544,%??

Mechanical enerqy can be defined as the form of energy that can be
converted to mechanical work completely by an ideal mechanical device.

Flow P/p, kinetic V2/g, and potential gz energy are the forms of
mechanical energy e,,.,= P/ p + V2/q + gz

Mechanical energy change of a fluid during incompressible flow becomes

_ Pz B Pl _|_V22 _V12

Aemech o
o, 2

—|—g(22—21)

In the absence of loses, Ae,,., represents the work supplied to the fluid
(Ae, . > O) or extracted from the fluid (Ae,_ . < O).

MECH-KIOT
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Transfer of ..., is usually accomplished by a rotating shaft: shaft work

Pump, fan, propulsion: receives shaft work (e.g., from an electric motor) and
transfers it to the fluid as mechanical energy

Turbine: converts e, of a fluid to shaft work.

mec

In the absence of irreversibilities (e.g., friction), mechanical efficiency of 3 device
or process can be defined as

E E

mech,out —1— mech,loss

77mech = E E

mech,in mech,in

If Nypech < 100%, losses have occurred during conversion.



The mechanical energy of water
at the bottom of a container 1s equal
to the mechanical energy at any

depth including the free surface
of the container.

MECH-KIOT



Wi = e, = 1ig(z) — 25) = mgh
since =P =F,_and V=1V =0

. — P
o = ey = BT _ AP
p p

since V5 = Vi and z; = I3

Fan

SOWIR | — /i = 0.50 ke/s

(D —(2)

V, =0, V,= 12 m/s

a=4
Fl == Pz
n _ A'EmEl:lJ, fluid _ mv%"z
fan — v =
mect Wahat_ in Wahart_ in
_ (0.50 kg/s)(12 m/s)*/2

S0W

MECH-KIOT =0.72



Mechanical power output ~ W.n ou

Motor: Nnotor — . : = —
Electric power input W otect. in
and
Electric power output W alect. out
Generator: Ngenerator = =

Mechanical power input W . .

Wpump- T AE mech, fluid
T?PIJI'I'I['.I—I'I'II'_'I'I.I'_'IT - npump Nmotor — - .
w W

elect, in elect, In

Wﬁ:h:{!i, out W::]n:cr_. out

Wtu rbine, |'ﬂ'Emcc h, fluid

nturhinc—gcn — Tturbine nge:m:ramr
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Bernoulli equation valid

\¥ o
Bernoulli equation not valid

MECH-KIOT

The Bernoulli equation is an
approximate relation between
pressure, velocity, and elevation
and is valid in regions of steady,
incompressible flow where net
frictional forces are negligible.

Equation is useful in flow
regions outside of boundary
layers and wakes.



The Bermownlls 57/1»0:7' 1o0M

If we neglect piping losses, and have a system without pumps or turbines

2 2
i +V1 +27, = i +V2
29 29 p,9 29

+ Z,

This is the Bernoulli equation

3 terms correspond to : Static, dynamic, and hydrostatic head (or
pressure).



General: |

r )
TTP + VT + g7 = constant

o

Incompressible flow (p = constant):

P, e
3 + - + g7 = constant |

=

(Steady flow along a streamline) | |

The Bernoulli equation 1s derived
assuming incompressible flow,
and thus 1t should not be used

for flows with significant
compressibility effects.

The Bernoulli equation states that the
sum of the kinetic, potential, and flow
energies of a fluid particle 1s constant
along a streamline during steady flow.

MECH-KIOT
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Pressurt or

Dynamic
pressure
. . / .
Piezometer /' Stagnation

_|'
.'I - a— -
f'f pressure, F, :
4

. V2
Static o ey

pressure, P -

__Pitot
tube

Stagnation
point

Ve \/ 2(Pyoe — P)
I['!

The static, dynamic, and
stagnation pressures.
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12 |
P+ p— + pgz = constant (kPa)

P is the static pressure (it does not incorporate any dynamic effects); it

represents the actual pressure of the fluid. This is the same as the pressure used

in thermodynamics and property tables.

pV2/2 is the dynamic pressure; it represents the pressure rise when the fluid in
motion is brought to a stop isentropically.

pgz is the hydrostatic pressure, which is not pressure in a real sense since its
value depends on the reference level selected; it accounts for the elevation
effects, i.e., of fluid weight on pressure.

The sum of the static, dynamic, and hydrostatic pressures is called the total

pressure. Therefore, the Bernoulli equation states that the total pressure along a
streamline is constant.



Close-up of a Pitot-static probe,
showing the stagnation pressure
hole and two of the five static
circumferential pressure holes.
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» Limitations on the use of the Bernoulli Equation
» Steady flow: d/dt =0
*  Frictionless flow
* No shaft work: Wi =Wypine= O
» Incompressible flow: p = constant
* No heat transfer: d,.(;,=0

Applied along a streamline



it and EG1.

Z
I

Wi

7

EGL 1~~~ i

~~ 4 |[V3/2z

I

—
N~

(L

) et )

- — =P =) =

_I 1 Diffuser

v y Arbitrary reference plane (z = 0)

2 3

MECH-KIOT

It is often convenient to plot
mechanical energy graphically
using heights to  facilitate
visualization of the various terms
of the Bernoulli equation.

Hydraulic Grade Line

HGL:i-FZ

PY
Energy Grade Line (or total

energy)

2
EGL = P +V + 7

P9 29
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@

Water jet
I
=N D
A \ “7

Jm Water -

0k |

Spraying Water into the Air Water Discharge from a Large Tank
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Velocity Measurement by 3 Pitot Tube

|

hy =12 cm

b

Water e

0

hy=3 cm|

K

on
|

Stagnation
point

Gasoline
flow intake
tube

2m

(Gas can

Siphoning out Gasoline from a Fuel Tank
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»  One of the most fundamental laws in nature is the 1=t law of
thermodynamics, which is also known as the conservation
of energy principle.

* It states that enerdgy can be neither created nor destroyed
during a process; it can only change forms

m

PE, = 10 kJ

» Falling rock, picks up speed as PE is
converted to KE.

- If air resistance is neglected,

||’ H PE,=7kJ PE + KE = COnSfanf

i KE, =3kJ




Qo =3K

________ F.

I

I
AE=(15-3)+6
=18 kJ |
I

I

I

Wshaft, in

=6kJ

=

MECH-KIOT net’ln

The energy content of a closed system
can be changed by two mechanisms:
heat transfer Q and work transfer W.

Consetvation of energy for a closed
system can be expressed in rate form as

: . dE
Qnet,in +Wnet,in —

sys

dt

Net rate of heat transfer to the system:
Qnet,in — Qin o Qout

Net power input to the system:
W :Win _Wout



gmvmaoé 54«1/%?? 57%&% 1ron

Recall general RTT

dB,, f
e didor

Pbd¥- +Ls pb(V,1i)dA

* “Derive” energy equation usi-ng B=E and b=e

dE

d:)S:Qm’m_l_W"“’“"_ _[CVped¥L+J.C ( ﬁ)dA

Break power into rate of shaft and pressure work
Wnet,m = Wr}uﬁ,mt,m + Wpresme,m! in .rhqﬁ‘ net in J-P ( )



%wv%a/ 5%%51? 57/1/1«&17' 1ron

*  Moving integral for rate of pressure work to RHS of energy
equation results in:

Qnet,in +Wshaft,net,in — %C_‘\‘/ IOECPVL +é“3£5 + Eje(\z . ﬁ)dA

Recall that P/p is the flow work, which is the work associated
with pushing a fluid into or out of 3 CV per unit mass.



%&Vv%ﬂé 544«%51? 57/1/»&17( 1ron

+ As with the mass equation, practical analysis is often
fcilitated as averages across inlets and exits

Qner,m + W;haﬁ,ﬂer,m — E&[,ped;L—i_ ;m{;—F E} ;m[;—|— g}

* Since e=utket+pe = u+V2/2+qz

- (P V? (P V'
Qne.t,m—'_wrs}mﬂ,ﬁzer,m :E J- peﬂﬁL—I_zm[P—l_u—i_ 2+gzlzm[p+u+2+ g-z}

i



544/%?? ﬁ/n/a«éyyw of g&aaf?_ % Yows
Qnet,ln shaft,net,in —Zm£h+v—2+gzj Zm£h+\/72+g2j

out

»  For steady flow, time rate of change of the energy content of the CV is
zero.

»  This equation states: the net rate of energy transfer to a CV by heat and
work transfers during steady flow is equal to the difference between the
rates of outgoing and incoming energy flows with mass.
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. ( Vi )
m hl+T+gZ]

In »— \
X !
o S * For single-stream devices, mass
\ :
{0 o flow rate is constant.
\
N 7

-~ / \
— ol
Out/ @
Qnet in T Wshaft, net in
2
S V5
m (/12+ 22 +gzz)

2 VE

V _
_ 2 1
Q'm:.':,m + ws}mﬁ,m:,m o h2 o h‘l + 9 + g(zz o ‘El )
RV PV
wsﬁmﬂ,ma:,m + 2 + gzl o + 2 + 822 + (HE o ul o qaﬂze.t,m)
1 pz
RV PV
+ 2 + 82 + wpump o + 2 + 82, + W, rbine + Emec}z,f-::'ss
£ £;
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Divide by g to get each term in units of length
PV P, V]

——+—+z+h =
/9 29 p.9 29

+ hturbme h

Control volume W,

. / urbine
Magnl{ude O{: eaCh ferm Elnech loss, pump Emech loss,
is now eXPl"eSSCd 3s ah turbine
equivalent column

Wturbine, e

height of fluid, ie,

Wpump, u
hturbine, e
Head

K\
: l/ Emech fluid, out
Emcch fluid, in :

&




Momentum Analysis of
Flow Systems
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Fluid flow problems can be analyzed using one of three basic approaches:
differential, experimental, and integral (or control volume).

In previous chapter, control volume forms of the mass and energy
equation were developed and used.

In this chapter, we complete control volume analysis by presenting the
linear momentum equation and anqgular momentum equations.

»  Review Newton’s laws and conservation relations for momentum.
»  Use RTT to develop linear and anqular momentum equations for
control volumes.

»  Use these equations to determine forces and torques acting on the
CV.



ﬁéﬁaﬁ«}:/w
After completing this chapter, you should be able to

» Identify the various kinds of forces and moments acting on 3
control volume.

»  Use control volume analysis to determine the forces associated with

fluid flow.

*  Use control volume analysis to determine the moments caused by
fluid flow and the torque transmitted.



N&w%n ,d/ ﬂazwax

« Newton’s laws are relations between motions of bodies and the forces

acting on them.

First law: 3 body at rest remains at rest, and a body in motion remains
in motion at the same velocity in a straight path when the net force
acting on it is zero.

Second law: the acceleration of 3 body is proportional to the net force
acting on it and is inversely proportional to its mass.

dV _ d (mV)

"t dt

F =ma =

Third law: when 3 body exerts 3 force on a second body, the second
body exerts an equal and opposite force on the first.



640044%,? o Cortrol Voluwme

Fixed control volume

« CV is arbitrarily chosen by fluid dynamicist,
however, selection of CV can either simplify or
complicate analysis.

»  Clearly define all boundaries. Analysis is often
simplified if CS is normal to flow direction.

»  Clearly identify all fluxes crossing the CS.

»  Clearly identify forces and torques of interest
acting on the CV and CS.

»  Fixed, moving, and deforming control volumes.

*  For moving CV, use relative velocity,

— —

Ve =V —Voy
» For deforming CV, use relative velocity all
deforming control surfaces,

© V.=V —Ves

MECH-KIOT

Deforming
control volume




%04/0%/ ng ona CV

»  Forces acting on CV consist of body forces that act throughout the entire
body of the CV (such as gravity, electric, and magnetic forces) and
surface forces that act on the control surface (such as pressure and viscous
forces, and reaction forces at points of contact).

Control volume (CV)

-

i P e  Body forces act on each volumetric
4 N o1 portion dV of the CV.

’

N

= »  Surface forces act on each portion dA of
y ’che CS.

AT T ————
L
T
h*
=W
>
\\ig -

S /l
Control surface (CS)



P
S
3
§

dy

e e e - e - — —

\

dF; body —

|

V,
A=F—-q-=—-
o
/’ t dx

gravity —

The most common body force is
gravity, which exerts 3 dJownward force
on every differential element of the CV

The different body force

dﬁbody — dﬁg'r‘avity — pgdv

—

. o g .
Typical convention is that = actsin
the nega{-i\/p '7_Ai|npr~+ii’wn,

g = —gk

Total bodv force actina on CV

Z ﬁbody = / pgdy = mcvg
C

|%4
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*  Surface forces are not as simple to
analyze since they include both normal
and tangential components

»  Diagonal components o,, o,,,0,, are
called normal stresses and are due to

pressure 3nd viscous stresses

»  Off-diagonal components o,,, o,,, etc,,
are called shear stresses and are due
solely to viscous stresses

T - Total surface force acting on CS

Z Fsurface — / Oij ndA
CS



50057_ and W&& % orced

Z F, _ \Z framty n Z ﬁpressure T vaiscous + Z ﬁothef.:

body force surface forces
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Newton’s second law for 3 system of mass m subjected to a force Fis

. V. d; -
F — 7 — —_— = — ( V)
M= =~ @

expressed 3s

— —

Use RTT with b = V and B = mV to shift from system formulation to the
control volume formulation
d(mV),, 4

= — Vd
dt dt Jo "’ V+/CS

SF-4

cVvV

oV (Vﬁ) dA

pf/’dv+/ oV (f/’ﬁ) dA
S



Oorggonlin, Pomertiamn

Motion of 3 rigid body can be considered to be the combination of
+ the translational motion of its center of mass (U,, U,, U,)
+ the rotational motion about its center of mass (@, ®,, ®,)

Translational motion can be analyzed with linear momentum equation.
Rotational motion is analyzed with anqular momentum equation.

Together, the body motion can be described as a 6-degree—of-freedom
(6DOF) system.



Keview of EKolitional Pclion

Angular velocity o is the anqular
distance 0 traveled per unit time,
and anqular acceleration o is the
rate of change of anqular velocity.

ag d(lr) 1dl V
w = = = _— = —

dt dt ~ rdt r

dw d29 1dV a¢
a j— p— p— j—

dt ~ dt?2  r dt

V =rw and a; = ro

MECH-KIOT
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Moment of 3 force:

M=7rxF
Moment of momentum:
H=7xmV

For 3 system-
H,ys = / (7 x V)pdV
sYs

dﬁsys d — 7
= V)pdV
dt dt /SyS(T xV)e

Therefore, the ang-!~+ ~~m=rt:2~ equation can be written as:

v st S
2 M==5

B=H

To derive anqular momentum for.a.CV, use RTT with and

|
<

!
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General form

Zﬂzif (FXV)pdVJr] (FxV)p(V}-ﬁ) dA
at Jov Cs

Approximate Form using average properties at inlets and outlets

ZM— / rprdV—I—Zfrme Zfrme
cV

out

Steadv flow

ZM —I—ermV ermV

out



Dimensional Analysis
and Modeling

Chogiton 7



e Understand  dimensions, units, and  dimensional
homodeneity

»  Understand benefits of dimensional analysis
» Know how to use the method of repeating variables

» Understand the concept of similarity and how to apply it to
experimental modeling



e Review

- Dimension: Measure of a physical quantity, e.g., length, time, mass
»  Units: Assignment of a number to a dimension, e.g., (m), (sec), (kq)

* 7/ Primary Dimensions:
¢ Mass M (kq)
* LengthL  (m)
 Time T  (sec)
*  Temperature 6 (K)
« Current I (A)
» AmountoflLight C  (cd)
»  Amountof matter N (mol)



Property Dimensions Property Dimensions

Acceleration Lt~? Momentum MLt™!
Angle Dimensionless Power MLt
Angular momentum MLt~ Pressure ML 't72
Angular velocity ¢! Specific heat L2217
Area L? Specific weight MLt
Density ML Strain Dimensionless
Energy MLt~ Stress ML 't
Force MLt—2 Surface tension Mt—2
Frequency ¢! Temperature T

Heat ML%t—2 Time t

Length L Torque ML%*t—?
Mass M Velocity Li—!
Modulus of elasticity ML 't72 Viscosity (dynamic) ML 't+!
Moment of a force ML3t2 Viscosity (kinematic) L2t—!
Moment of inertia (area) L* Volume L’

Moment of inertia (mass) ML? Work MI2t-2

MECH-KIOT



Quantity Symbol MLT®

Length L L

Area A L?
Volume Vv L’
Velocity V LT
Acceleration dV/dt LT
Speed of sound a LT
Volume flow 0 L’r !
Mass flow i MT !
Pressure, stress p. o ML T2
Strain rate € T!
Angle f None
Angular velocity w T
Viscosity L ML'T!
Kinematic viscosity v LT
Surface tension Y MT*
Force F MLT?
Moment, torque M ML*T?
Power P ML*T
Work, energy W, E MIL*T 2
Density P ML
Temperature T (G
Specific heat Cpn €y L°T 26!
Specific weight ¥ ML?T 2
Thermal conductivity k MLT 0!
Expansion coefficient B e

?



»  All non-primary dimensions can be formed by a combination
of the 7 primary dimensions

*  Examples
{Velocity} = {Length/Time} = {L/T}

* {Force} = {Mass Length/Time} = {ML/T?}



DPimensional #omzogmmf 7

Law of dimensional homogeneity (DH): every additive term in an

equation must have the same dimensions
(- S;+( ;§+©:‘?

You can’t add apples and oranges!

Example: Bernoulli equation

1
p-|-§ V2—|—ng:C

{p} = {force/areal={mass x length/time2 x 1/length2} = {M/(T2L)}

{1/2pV?} = {mass/length3x (length/time)?} = {M/(T2L)}

{pgz} = {mass/length?x length/time2 x length} ={M/(T2L)}



»  Given the law of DH, if we divide each term in the equation by a
collection of variables and constants that have the same dimensions,
the equation is rendered hon-dimensional

» In the process of nondimensionalizing an equation, hondimensional
parametets often appear, e.q., Reynolds number and Froude number
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To nondimensionalize, for example, the Bernoulli equation, the first step is
to list primary dimensions of all dimensional variables and constants

1
p-|—§ V2—|—ng:C

{p} = {M/(T2L)} ip} = {M/L3} {vl={L/T}
{g} = {L/T?} {z} = {L}

Next, we need to select Scaling Parameters. For this example, select L,
Vo Po



By inspection, nondimensionalize all variables with _ scaling

pz % * x
p” = =— V=
poUs g Lo Uo
* gL * <
g _ —— z _ —
Us L
1

poUgp* + 5pop” (U(?V*Q) +pop g Usz" =C



»  Divide by poU,2 and set p* =1 (incompressible flow)

1 C
* * 2 * %
P + §V +g 2z = 5 — C*
Po U 0
« Since g’z =1/Fr?, where
4 & Inertial force
Froude number Fr = —— (mmclinm n'_“l l‘l mL,L
\VeL gL Gravitational force
U
Fr=-X

p* 4 _V*Z | e
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Advantages of non-dimensionalization

* Increases insight about key parameters

»  Decreases number of parameters in the problem

Easier communication
Fewer experiments

Fewer simulations

»  Extrapolation of results to untested conditions



Dimensionless | Symbol | Group of Field of application
humbers Variables
Reynolds humber | Re i Laminar viscous flow in confined
(IF/VF) pT passages ( where viscous effects are
significant)
Froude number Fr v Free surface flows ( where gravity
(IF/GF) Jig effects are important)
Euler number Eu \ Conduit flow ( where pressure
(IF/PF) P/p variations are significant)
Weber number | We y Small surfaces waves, capillary and
(IF/STF) ——— | sheet flow ( where surface tension
g is important)
Mach number M Vv High speed  flow  (where
(IF/EF) JK/p compressibility effects are

significant)

MECH-KIOT




Drirmensional ﬂmé}m

Nondimensionalization of an equation is useful only when the equation is

known!

In many real-world flows, the equations are either unknown or too

difficult to solve.

- Experimentation is the only method of obtaining reliable information

* In most experiments, geometrically-scaled models are used (time and
money).

* Experimental conditions and results must be properly scaled so that
results are meaningful for the full-scale prototype.

+ We need to introduce a powerful technique called Dimensional
Analysis



Primary purposes of dimensional analysis

»  To generate nondimensional parameters that help in the design of
experiments (physical and/or numerical) and in reporting of results.

»  To obtain scaling laws so that prototype performance can be predicted
from model performance.

* To predict trends in the relationship between parameters.



Various methods

1) Buckingham’s Pi theorem
2) Rayleigh’s method
3) Bridgman’s method

4) Matrix-Tensor method



« If there are n variables ( dependent and independent) in a
dimensionally homogeneous equation and if these variables
contain m fundamental dimensions ( such as M,LT,0), the

variables are arranged into (n-m) dimensionless terms.

« These dimensionless terms are called as Pi theorem



The Method Of Repeating Variables And The Buckingham Pi
Theorem

The Method of Repeating Variables

Step 1: List the parameters in the problem
and count their total number n.

Step 2: List the primary dimensions of each
of the n parameters.

Step 3: Set the reduction j as the number
of primary dimensions. Calculate &,
the expected number of II’s,
k=n-—j

Step 4: Choose J repeating parameters.

Step 5: Construct the k II's, and manipulate
as necessary.

Step 6: Write the final functional relationship
and check your algebra.

MECH-KIOT



Guidelines for choosing repeating parameters in step 4
of the method of repeating variables

Guideline

1. Never pick the dependent variable.
Otherwise, 1t may appear in all the
II's, which 1s undesirable.

2. The chosen repeating parameters
must not by themselves be able
to form a dimensionless group.
Otherwise, It would be impossible
to generate the rest of the II’s.

3. The chosen repeating parameters
must represent al/l the primary

EEEEEEEE



4. Never pick parameters that are
already dimensionless. These are
II's already, all by themselves.

5. Never pick two parameters with
the same dimensions or with
dimensions that differ by only
an exponent.

6. Whenever possible, choose
dimensional constants over
dimensional variables so that
only one 11 contains the
dimensional variable.

/. Pick common parameters since

EEEEEEEE



Guidelines for manipulation of the [1's resulting from the method of
repeating variables

Guideline

1. We may impose a constant
(dimensionless) exponent on
a 11 or perform a functional
operation on a Il.

2. We may multiply a 1l by a
pure (dimensionless) constant.



3. We may form a product (or quotient)
of any Il with any other Il in the
problem to replace one of the 1I's.

4, We may use any of guidelines
1 to 3 In combination.

5. We may substitute a dimensional
parameter in the 11 with other
parameter(s) of the same dimensions.

MMMMMMMMM



Enarmple

Ball Falling in a Vacuum

A

wo = initial vertical speed

g = gravitational
acceleration in the

Zp = Initial | negative z-direction

elevation o
A ‘ Y

z = elevation of ball
=f(t, wo, 20, &)

b e e o o — — — ks — — — — — — — — — — — — — — — —

z =0 (datum plane)

Step 1. List relevant parameters.
z=f(t,Wp,20,9) = n=5

Step 2: Primary dimensions of each
parameter

t () 20 g

{£'y {¢'y {L4}p {£'} {L't7%}

Step 3: As 3 first quess, reduction j is set
to 2 which is the number of primary
dimensions (L and t). Number of
expected IT’s is k=n-j=5-2=3

Step 4: Choose repeating variables wy

M E%HQIO ZO
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» Step 5: Combine repeating parameters into products with each of the
remaining parameters, one at 3 time, to create the IT’s.

° H1=Zwoa1zob1

* aland b1 are constant exponents which must be determined.

Use the primary dimensions identified in Step 2 and solve for a; and b,

{IL} = {L%°} = {zwy' '} = {L} (L1t 1) ™ L™}

Time equation:

{t°Y={t7 "} 0= —-a; —a; =0

Length equation:
(L%} ={L'L™L"} - 0=14a1+by = by =—1—a; — b = —1

0.—1 <
00 —
20

MECH-KIOT

Thisresultsin | TI; = zw
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Step 5: continued
Repeat process for IT, by combining repeating parameters with t

I1, =t wy?2z,"2
{Ta} = {L°°} = {twg?20°} = {t' (L't 1) L%}

Time equation:
{t°} = {t't ™2} 5 0=1-a3 —waz =1

Length equation:

(L%} = {L% L%} - 0=uay+ by — by = —ap — by = —1

. . — ‘LU(]f}
* This results in IIo = twézo L= =
<0

MECH-KIOT
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 Step 5: continued
*  Repeat process for IT; by combining repeating parameters with g

© Th = g wotizoh?

(T} = {L°1°} = {gug? 2} = {L1¢2 (L)L)
Time equation:

{t°Y ={t 7%t %} > 0=—-2—a3 — a3 = —2

Length equation:
(L%} = {L'L% L%} s 0=14+a3+bs —b3=—-1—a3 —>b3=1

. —-1/2
. —2 1 _ 920 gzo wWo
I3 = gwy “z5 = 02 13 modified = (2 = = I'r
0 MECH-KIOT wO V gzo
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e S’cep 6:
« Double check that the IT’s are dimensionless.
»  Write the functional relationship between IT’s

A wolt wo

Of’, 1 NCH1jo UL oy olvilgl vqrigyico

z* = f(t*, Fr)
»  Ovenall conclusion: Method of repeating variables properly predicts the
functional relationship between dimensionless groups.

»  However, the method cannot predict the exact mathematical form of
the equation.



Detailed description of the six steps that comprise the method of repeating
variablas*®

Step 1

Step 2
Step 3

Step 4

Step 5

Step B

List the parameters (dimensional variables, nondimensional variables,
and dimensional constants) and count them. Let n be the total
number of parameters in the problem, including the dependent
variable. Make sure that any listed independent parameter is indeed
independent of the others, i.e., it cannot be expressed in terms of
them. (E.g., don't include radius rand area 4 = =r%, since rand A
are not independent.)

List the primary dimensions for each of the n parameters.

zuess the reduction j. As a first guess, set jegual to the number of
primary dimensions represented in the problem. The expected

number of I1's (k) is equal to 7 minus j, according to the Buckingham
Pi theorem,

The Buckingham Pi thearem: k=n-—j (7-14)
If at this step or during any subsequent step, the analysis does not
work out, verify that you have included enough parameters in step 1.
Otherwise, go back and reduce j by ome and try again.

Choose j repeating parameters that will be used to construct each I1.

Since the repeating parameters have the potential to appear in each
[1, be sure to choose them wisaly (Table 7-3).

zenerate the I1's one at a time by grouping the j repeating parameters
with one of the remaining parameters, forcing the product to be
dimensionless. In this way, construct all k IT's. By convention the first
[1, designated as II,, is the dependent I1 (the one on the left side of
the list). Manipulate the I1's as necessary to achieve established
dimensionless groups (Table 7-5).

Check that all the I1's are indeed dimensionless. Write the final

functional relationship in the form of Eq. 7-11.
MECH-KIOT




Guidelines for choosing repeating parameters in step 4 of the method of repeating variables®

Guideline

Comments and Application to Present Problem

1.

MNever pick the dependent variable.

Otherwise, it may appear in all the
IT's, which is undesirable.

. The chosen repeating parameters

must not by themselves be able
to form a dimensionless group.
Otherwise, it would be impossible
to generate the rest of the I1'.

. The chosen repeating parameters

must represent &/l the primary
dimensions in the problem.

. Never pick parameters that are

already dimensionless. These are
[1's already, all by themsalves.

. Never pick two parameters with

the same dimensions or with
dimensions that differ by only
an exponent.

In the present problem we cannot choose z, but we must choose from among
the remaining four parameters. Therefore, we must choose two of the following

parameters: f, Wy, Z, and g.

In the present problem, any two of the independent parameters would be valid
according to this guideline. For illustrative purposes, however, suppose we have
to pick three instead of two repeating parameters. We could not, for example,
choose £, wy,, and z;, because these can form a 11 all by themselves (twy/z,).

Suppose for example that there were three primary dimensions (m, L, and t) and

two repeating parameters were to be chosen. You could not choose, say, a length
and a time, since primary dimension mass would not be represented in the

dimensions of the repeating parameters. An appropriate choice would be a density
and a time, which together represent all three primary dimensions in the problem.

Suppose an angle f were one of the independent parameters. We could not choose
f as a repeating parameter since angles have no dimensions (radian and degree
are dimensionless units). In such a case, one of the I1's is already known, namely 6.

In the present problem, two of the parameters, z and z,, have the same
dimensions (length). We cannot choose both of these parameters.

(Note that dependent variable 7 has already been eliminated by guideline 1.)
Suppose one parameter has dimensions of length and another parameter has
dimensions of volume. In dimensional analysis, volume contains only one primary
dimension (length) and is not dimensionally distinct from length—we cannot
choose both of these parameters.

MECH-KIOT



b. Whenever possible, choose

dimensional constants over
dimensional variables so that

only one I1 contains the
dimensional variable.

[. Pick common parameters since
they may appear in each of the II's.

8. Pick simple parameters over
complex parameters whenever
possible,

|f we choose time f as a repeating parameter in the present problem, it would
appear in all three I1's. While this would not be wrong, it would not be wise
since we know that ultimately we want some nondimensional height as a

function of some nondimensional time and other nondimensional parametar(s).
From the original four independent parameters, this restricts us to wy, Z,, and 2.

In fluid flow problems we generally pick a length, a velocity, and a mass or
density (Fig. 7-25). It is unwise to pick less comman parameters like viscosity p
or surface tension e, Since we would in general not want x or o to appear in
each of the II's. In the present problem, w; and z, are wiser choices than g.

|t is better to pick parameters with only one or two basic dimensions (e.g.,
a length, a time, a mass, or a velocity) instead of parameters that are composed
of several basic dimensions (8.2., an energy or 8 pressure).

MECH-KIOT



Guidelines for manipulation of the IT's resulting from the method of repeating variables.”

Guideline

Comments and Application to Present Problem

1. We may impose a constant
(dimensionless) exponent on
a I or perform a functional
operation on a I1.

2. We may multiply a IT by a
pure (dimensionless) constant.

3. We may form a product (or quotient)
of any I1 with any other II in the
problem to replace one of the IT's.

4, We may use any of guidelines
1 to 3 in combination.

5. We may substitute a dimensional
parameter in the IT with other

parameter(s) of the same dimensions.

We can raise a II to any exponent n (changing it to [17) without changing the
dimensionless stature of the II. For example, in the present problem, we
imposed an exponent of —3 on I15. Similarly we can perform the functional
operation sin(IT), exp(Il), etc., without influencing the dimensions of the II.

Sometimes dimensionless factors of %, 2,4, etc., are included in a II for
convenience. This is perfectly okay since such factors do not influence the
dimensions of the IL

We could replace I1, by I1,I1,, II5/11,, etc. Sometimes such manipulation is
necessary to convert our II into an established II. In many cases, the
established IT would have been produced if we would have chosen different
repeating parameters.

In general, we can replace any IT with some new IT such as AIIS sin(ITf),
where A, B, and C are pure constants.

For example, the IT may contain the square of a length or the cube of a

length, for which we may substitute a known area or volume, respectively, in
order to make the IT agree with established conventions.
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Some common established nondimensional parameters or II's encountered in fluid
mechanics and heat transfer®

Name Definition Ratio of Significance
, g’ Gravitational force
Archimedes number Ar = P gz (p, — p) :
L Viscous force
‘ L L Length Length
Aspect ratio AR =— or — — —
W Width Diameter
‘ hi Surface thermal resistance
Biot number i =— _
k Internal thermal resistance
g(pr— p,)L? Gravitational force
Bond number 0= :
o, Surface tension force
L _ P—P, Pressure — Vapor pressure
Cavitation number Ca (sometimes o,) = = :
pV- Inertial pressure
. 2AP—P,)
sometimes 3
pV

MECH-KIOT



Darcy friction factor

Drag coefficient

Eckert number

Euler number

Fanning friction factor

Fourier number

f=—:
p
Fp
Co=17—73
2pVA
VE
Ec =
I:-.'PT
AP ( _
Eu = — 5 | sometimes
pV
C.— 27,

) ot
Fo (sometimes 7) = E

MECH-KIOT

AP

1
2P

vz)

Wall friction force

Inertial force

Drag force

Dynamic force

Kinetic energy

Enthalpy

Pressure difference

Dynamic pressure

Wall friction force

Inertial force

Physical time

Thermal diffusion time



Froude number

Grashof number

Jakob number

Knudsen number

Lewis number

Lift coefficient

V .
Fr =—— (smnenmes _L)

Vel

gBIAT|L p?
Gr = 3
L
cp(T — Toy)
Ja =
.Ilfg
A
Kn=-—
L
k a
Le = = —
,U'TPDAB D4p
F
CL — L

MECH-KIOT

Inertial force

Gravitational force

Buoyancy force

Viscous force

Sensible energy

Latent energy

Mean free path length

Characteristic length

Thermal diffusion

Species diffusion

Lift force

Dynamic force



V Flow speed

Mach number Ma (sometimes M) = — t
C Speed of sound
Lh Convection heat transfer
Nusselt number Nu = — -
k Conduction heat transfer
PLV'i'-}; LV Bulk heat transfer
Peclet number Pe = = _
k « Conduction heat transfer
W Power
Power number Np=—%— : .
pD’w Rotational inertia
r  MC Viscous diffusion
Prandtl number Pr=—=—" _ _
o k Thermal diffusion
o P—P, Static pressure difference
Pressure coefficient C =

S PATE Dynamic pressure
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Pressure coefficient

Rayleigh number

Reynolds number

Richardson number

Schmidt number

Sherwood number

Static pressure difference

Dynamic pressure

Buoyancy force

B P—-P,
TV
gBIAT|L p%c,
q =
kL
VL VL
Re = P =
u- )
[’¢ A
Ri = g. ,;G
pV-
Sc = .
pDpg  Dyp
VL
Sh=——

MECH-KIOT

Viscous force

Inertial force

Viscous force

Buoyancy force

Inertial force

Viscous diffusion

Species diffusion

Overall mass diffusion

Species diffusion



Specific heat ratio

Stanton number

Stokes number

Strouhal number

Weber number

c
. P

k (sometimes y) = —
C

'i_.l

h
pc,V

P

St =

PV
18

Stk (sometimes St) =

St (sometimes S or Sr) = ?

_pVL

a

We

b

MECH-KIOT

Enthalpy

Internal energy

Heat transfer

Thermal capacity

Particle relaxation time

Characteristic flow time

Characteristic flow time

Period of oscillation

Inertial force

Surface tension force



%W;L

Geometric Similarity - the model must be the same shape as the
prototype. Each dimension must be scaled by the same factor.

Kinematic Similarity - velocity at any point in the model must be
propotrtional .

Dynamic Similarity - all forces in the model flow scale by a constant factor
to corresponding forces in the prototype flow.

Complete Similarity is achieved only if all 3 conditions are met.
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In 3 general flow field, complete similarity between a
model and prototype is achieved only when there is

geometric, kinematic, and dynamic similarity.

Prototype:
Ly
—
v —
LA . Kinematic similarity is achieved when,
at all locations, the velocity in the
T model flow 1s proportional to that
| P P-rat corresponding locations in the
prototype flow, and points in the
Model: same direction.
Vm
—

FD, m

MECH-KIOT



Some Common Variables and Dimensionless Groups in Fluid Mechanics
I ————————————————

Variables: Acceleration of gravity. g; Bulk modulus, E; Characteristic length. €: Density. p:
Frequency of oscillating flow, @: Pressure, p (or Ap): Speed of sound, ¢: Surface tension, o;
Velocity, V: Viscosity, u

Dimensionless Interpretation (Index of  Types of
Groups Name Force Ratio Indicated) Applications
pVE Reynolds number, Re inertia force Generally of importance in
L viscous force all types of fluid dynamics
problems
Vv Froude number, Fr inertia force Flow with a free surface
Vgl gravitational force
p Euler number, Eu pressure force Problems in which pressure,
P.L,rz inertia force or pressure differences, are
of interest
pV? Cauchy number,” Ca inertia force Flows in which the
E, compressibility force compressibility of the fluid
15 important
E Mach number.* Ma inertia force Flows in which the
¢ compressibility force compressibility of the fluid
in important
wl Strouhal number, St inertia (local) force Unsteady flow with a
v inertia (convective) force characteristic frequency of
oscillation
pV3 Weber number, We inertia force Problems in which surface

suifaee tension force

tension is important
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It is not always possible to match all the IT's of a model
to the corresponding IT’s of the prototype, even if we
are careful to achieve geometric similarity. This

situation is called incomplete similarity.

In such case we need to extrapolate model tests to

obtain reasonable full- scale predictions



Flow in Pipes
Chogton 5



ﬁ%ﬁ@% tves

»  Have 3 deeper understanding of laminar and turbulent flow in pipes
and the analysis of fully developed flow.

»  Calculate the major and minor losses associated with pipe flow in
piping networks and determine the pumping power requirements.



Enomples

Distribution of water
Blood flow through arteries and veins
Oil and natural gas pipelines

Heating and cooling systems of building



In general, flow sections of circular
cross section are referred to as pipes

(especially when the fluid is liquid)

flow sections of non circular cross
section are referred to as ducts
(especially when the fluid is gas).

Smaller diameter pipes are usually
referred as tubes.

MECH-KIOT

Circular pipe

Water
50 atm

Rectangular
duct

/o

Air-”

1.2 atm

Circular pipes can withstand large
pressure differences between the
inside and the outside without
undergoing any distortion, but
noncircular pipes cannot.



»  For pipes of constant diameter
and incompressible flow

* V, stays the same down
the pipe, even if the velocity

profile changes

\\V A 4 V/

« Conservation of Mass

m = /PVang = constant

same \ same
same



* For pipes with variable diameter, m is still the same due to
conservation of mass, but V, # V,

D,

l

_E. N




»  Critical Reynolds number (Re,) for
flow in a round pipe
e Re<2300 = laminar
Definition of Reynolds number e« 2300 £ Re £ 4000 >
transitional
« Re> 4000 = turbulent

sertial foree « Note that these values are

‘ A approximate.
o . * For a given application, Re,, depends
, upon
*  Pipe roughness
« Vibrations

— »  Upstream fluctuations,
disturbances (valves, elbows, etc.
that may disturb the flow)




Circular tube:

4(rD?2/4)
Dlz = oD =0

Square duct: a { |

4a?
Dy=75-=a .

Rectangular duct:. ||4

_ 4ab  2ab
h=2@+b) a+b

What does it mean? This

channel flow is equivalent to a

round pipe of diameter 0.34m
(approximately).

For non-round pipes, define the hydraulic

Dy,

diameter

= 4A /P

A_ = cross-section area

P = wetted perimeter 02w

=
[

Example: open channel et

Ac=0.15*0.4 = 0.06m?
P=015+015+0.4=0.7m

Dont count free surface, since it does
hot contribute to friction along pipe
walls!

D, = 4A_/P = 4*0.06/0.7 = 0.34m



The Evtrance ?\Dagww

- Consider 3 round pipe of diameter D. The flow can be
laminar or turbulent. In either case, the profile develops
downstream over several diameters called the entry length L,.
L, /D is a function of Re.

Irrotational (core) Velocity boundary Developing velocity Fully developed
flow region ? layer profile velocity profile
V.
avg avg / avg

- Hydrodynamic entrance region = p =

Hydroedynamically fully developed region



> The hydrodynamic entry length is the distance from the pipe
entrance to 3 point where the wall shear stress (and thus the
friction factor) reaches within about 2% of fully developed
value.

Lh,laminar = 0.05DRe,,
Lh,turbulent = 1.359DRep 25
Beyond a pipe length of 10D; Ly ,ipuient = 10D



Entry Length

i
Entrance region -——

:—"" Fully
I developed
! region
I o
[
i
1
! -
|
" X
Ty Ty Ty Ty Ty Ty Ty
- -4 - e—— — ——

|

Velocity boundary layer I

1 / ! Vn
I el
-------------------------------- R T— = -
: Fully developed
Entrance region | region
i
[
Lh | |

The variation of wall shear stress in
the flow direction for flow in a pipe
from the entrance region into the fully

MECH-KIOT

developed region.
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Comparison of laminar and turbulent flow

* There are some major differences
between laminar and turbulent
fully developed pipe flows

Laminar

Can solve exactly

Flow is steady _=

Velocity profile is parabolic
Pipe roughness not important
It turns out that Vv, = 1/2U

avg max

and u(r)= 2V, (1 - P/R?)

MECH-KIOT

= avg —

.. 12

max

max

Y
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Turbulent

» Cannot solve exactly (too complex) Flow is unsteady (3D swirling eddies),
but it is steady in the mean

* Mean velocity profile is fuller (shape more like 3 top-hat profile, with very
sharp slope at the wall)

» Pipe roughness is vety important V,, 85% of Umax (depends on Re)

* No analytical solution, but there are some dood semi-empirical expressions
that approximate the velocity profile shape.




% wéZy_ @W&ZO]@@&Z 731740 f Yow

%/Mﬁﬂ:z}ow %ﬂ«ﬂ'@/b
—
47y L 87—11) 2
hy = — — = > Tw = [PV /8
LV?
hL:fBZ

*  Our problem is now reduced ’c@ing\fbr Darcy friction factor f

Il f = func(Re, But for laminar flow, roughness
Reca does not affect the flow unless it is

 Therefore huge
« laminar flow: f=64/Re (exact)

- Turbulent flow: Use charts or empirical equations (Moody Chart, a
famous plot of f vs. Re and &/D)
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Head Loss

In the analysis of piping system pressure losses are commonly
expressed in terms of the equivalent fluid column height called head
loss h,.

It also represents the additional height that the fluid needs to be
raised by a pump inorder io overchE\/’ghe frictional losses in the

pipe h, = P e

Pg 2gd




Woump = 16 hp

2. = Vo The pumping power requirement for a
laminar flow piping system can be
reduced by a factor of 16 by doubling
the pipe diameter.

Wpump: I hp

2D =Y, /4

Once the pressure loss (or head loss) is available, the required pumping
power to overcome the pressure loss 1s determined from
14

pump, L — VAPL — VP@‘T}IL — -”iighL

where V is the volume flow rate and m is the mass flow rate.
The mean velocity for laminar flow in a horizontal pipe is,

Hori-ontal pie: v (P — P)R* (P, —P)D* ApPD?
orizontat pipe: m Sl = 32ul = 32l
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Hagen — Poiseuille’s Law
Then the volume flow rate for laminar flow through a horizontal pipe of
diameter D and length L becomes

(P] T PE}RE
8L

. (Py=PymD*  APxD*
TR- = =
128 L 128 L

Horizontal pipe: 'V ="1,A, =

This equation is known as Poiseuille’s Law, and this flow is called Hagen-
Poiseuille flow in honor of the works of G. Hagen (1797-1839) and
J. Poiseuille (1799-1869) on the subject. Note from Eq. that for a spec-
ified flow rate, the pressure drop and thus the required pumping power is pro-
portional to the length of the pipe and the viscosity of the fluid, but it is
inversely proportional to the fourth power of the radius (or diameter) of the
pipe.
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APrD*
AP _
L W Horizontal pipe: V= 1284

; h i % / - (AP—pgLsin§)zD*
\ \

5 Inclined pipe: V = 28uL

E‘I
/ Pressure loss: AP, =f 5'3 i

Uphill flow: >0 and sin 8 >0
Downbhill flow: 8 <0 and sin @ <0

2
ALY
pg fﬂzg

kfkf

\ Head loss: h; =

The relations developed for fully
The relation for pressure loss (and developed laminar flow through

head loss) is one of the most general K : o
L . - horizontal pipes can also be used for
relations in fluid mechanics, and it 1s

valid for laminar or turbulent flows, inclined pipes h}’ 1'eplar:ing AP with

circular or noncircular pipes, and AP — ng sin 6.

smooth or rough surfaces.
MECH-KIOT
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Edies

Turbulent flow 1s characterized by random and rapid fluctuations
swirling fluid particles, called eddies, throughout the flow.

'

() Before (£) After
turbulence turbulence
u=u-+u
The intense mixing in turbulent flow h
brings fluid particles at different Time, ¢
momentums into close contact, and
thus enhances momentum transfer. Fluctuations of the velocity

component ¥ with time at a specified

location in turbulent flow.
MECH-KIOT
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Turbulent Velocity Profile

the velocity profile is parabolic in laminar flow

¥

i i
Laminar flow -
1
- N ur)
I
-.G. =r-- l“- lllllllllll -_—
q Turbulent layer
] | |
y Overlap laver
_ LA e

1 N Buffer layer

Turbulent flow Viscous sublayer

fuller in turbulent flow, with a.sharp drop near the pipe wall



Turbulent Velocity Profile

viscous effects are dominant is the viscous (or laminar or linear or wall) sublayer.
The velocity profile in this layer is very nearly linear, and the flow is streamlined.

Next to the viscous sublayer is the buffer layer, in which turbulent effects are becoming significant,
but the flow is still dominated by viscous eftects.

Above the butter layer is the overlap (or transition) layer, also called the inertial sublayer,
in which the turbulent effects are much more significant, but still not dominant.

Above that is the outer (or turbulent) Jayer in the remaining part of the flow in which turbulent effects
dominate over molecular diffusion (viscous) effects.

MECH-KIOT



ﬁ,éé} Developed Pipe Tlow - Friction fador

Moody chart was developed for circular pipes, but can be used for non-
circular pipes using hydraulic diameter

Colebrook equation is a curve-fit of the data which is convenient for

computations 1 901 (E/D 2.01 )
— = —2.0l0 |
/T S\ 37 " Revf

Both Moody chart and Colebrook equation are accurate to +15% due to
roughness size, experimental error, curve fitting of data, etc.

e . L ol _ f'_l‘L._)

S.E. Haglz~— 1 - =--t:- kel

| 6.9 (e/D)""
\/J?m_l'glog[Re_l_(Sﬂ) }

ok eqaution.




Darcy friction factor, f

The Moody Chart

0.1 NTIT— T T T T T
0.09 [\ Laminar Transitional Turbulent
[\ flow — [ ﬂovlv . T flow ‘\
0.08 [ e S Fully rough turbulent flow (flevels off)
e —
0.07 s 0.05
~L ™ 0.04
0.06 |-+ ™ 4
\ = : 0.03
0.05 \ T o
S\ NN SR 0.02
2 i s o R
2 NANSes cm 0.015
0.04 %;\ \ AN NSRL Y man 't .
NN | N K
oéli— N . - 0.008
" N Tl ~ ‘
e
0.03 } NS T 2 0.006
: 2 N = %
=\ 5 0.004
‘g \ <! ~ | N
0.025 T = —
\\ :\:\\~ = 0.002
OS] N N
N e R B e A
\ SIS S i o0
L Roughness, e N = L = »
: : N 0.0006
Material ft mm ‘\\ e e 0 S 0.0004
0.015 | Glass, plastic 0 0 ‘\\\ T~ | 3 i
| Concrete 0003-003 099 o S W i
| Wood stave 0.0016 05 ||| Smooth pipes NN T 3 0.0002
Rubber, smoothed 0.000033 0.01 . ‘\\ ™ L i
I . 1l eD=0 [~ - >
Copper or brass tubing 0.000005 0.0015 N L 0.0001
L Cast iron 0.00085 0.26 el L] L
0.01 | Galvanized iron 0.0005 0.15 N T S 0.00005
7 | Wrought iron 0.00015 0.046 NN e/D =0.000005 [ T4
0.009 | Stainless steel 0.000007 0.002 NS ) S
| Commercial steel 0.00015 0.045 e/D = 0.000001 7 L
0.008 L [ A A [ R L1 | 11 I~ B 0.00001

L
103 210 3 456 8 (o4 2(103 4 56 8105 2010 3 4 56 8 106 201093 456 8197 21073 456 88

Reynolds number, Re

MECH-KIOT
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Equivalent roughness values for
new commercial pipes”

Roughness, &

Material ft mm
Glass, plastic 0 (smooth)
Concrete 0.003-0.03 0.9-9

Wood stave 0.0016 0.5
Rubber,
smoothed 0.000032 0.01

Copper or

brass tubing 0.000005 0.0015
Cast iron 0.00085 0.26
Galvanized

iron 0.0005 0.15

Wrought iron 0.00015 0.046
Stainless steel 0.000007 0.002

Commercial
steel 0.00015 0.045

*The uncertainty in these values can be as much
as =60 percent. ViECHKoT



Relative Friction

Roughness, Factor,
elD f
0.0 0.0119
0.00001 0.0119
0.0001 0.0134
0.0005 0.0172
0.001 0.0199
0.005 0.0305
0.01 0.0380
0.05 0.0716

*Smooth surface. All values are for Re = 105,
and are calculated from Colebrook equation.

The friction factor 1s
minimum for a smooth pipe
and increases with roughness.
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Tpes of Pluvicd Fow Prollems

*  Explicit relations have been developed which eliminate iteration. They are
useful for quick, direct calculation, but introduce an additional 2% error

«  Swamee and Jain Relation
. —2 —6 —2
27, D\ %° 107° <¢/D < 10
hp = 10752 din |~ 4462 (22 .
gD? 3.7D Y 3000 < Re < 3 x 10

, 5 0.5 o1 0.5
V:_O_%E)(gl) hL) ln[ : +(3.17u L)

Re > 2000

L 3.7D ' \ gD3h

0.04

. 4.75
D =066 |2 [ B2 + v (L) . 107" <¢/D <107
5000 < Re < 3 x 10°



Types of Fluid Flow Problems

1. Determining the pressure drop (or head loss) when the pipe length and
diameter are given for a specified flow rate (or velocity).

2. Determining the flow rate when the pipe length and diameter are given
for a specified pressure drop (or head loss).

3. Determining the pipe diameter when the pipe length and flow rate are
given for a specified pressure drop (or head loss).

Problem
type Given Find
1 L, DV AP (or h))
2 L,D,AP V

3 L,AP,V D

MECH-KIOT



Winor Losses

Piping systems include fittings, valves, bends, elbows, tees, inlets, exits,

enlargements, and contractions.

These components interrupt the smooth flow of fluid and cause
additional losses because of flow separation and mixing.

We introduce 3 relation for the minor losses associated with these

components

2
= kY
29

K, is the loss coefficient.
Is different for each component.
Is assumed to be independent of Re.

Typically provided by manufacturer
or generic table



Minor losses are usually expressed in terms of the loss coefficient K,

':'I_.'"
— (1) | |(2)
=

AP, The loss coefficient of a component

V2 (such as the gate valve shown) 1s
determined by measuring the pressure
loss 1t causes and dividing it by the
dynamic pressure in the pipe.
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P =i
Ff/f 2

] 2 Le uiv DI»'"“E
Equwr.;.tfenr h =K, Ve f quiv V'°
length. 2¢ D 2¢g

m
2 — O
|

©

equiv [

The head loss caused by a

component (such as the angle

valve shown) i1s equivalent to the head
loss caused by a section of the pipe
whose length is the equivalent length.
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Pinor Losses

»  Total head loss in a system is comprised of major losses (in the pipe
sections) and th~ ==~ Tmmmmn Fi Lo oo A
hL — hL:mﬂjUT T hL,minur

L; V? V2

J

~ \ g )

| pipe sections j components

° h[tl')e PlPlnS L V2
= (15425 5



Minor Losses

Here are some sample loss coefficients for various minor loss components. More values are
listed in Table 8-4, page 350 of the Cengel-Cimbala textboolk:
=y finfedt

Reentrant: K, = 0.80
(F == Dand f == 3.10}

Sty rouvnded (D = 0.11:
(see Fig, B—3&)

Fipe Exit =
Reantrant: K; = « Sharp-edgedx E;_ = o ) H‘mndsﬁl'

=i =i

Sircdederr Expransairr arad Conlractaosr fbasr_-d ot Mrer verlcrezdfy dn the simalior digrmeior ppipee)

. a2
Sirddent expansion: K — (1 e F

Mote that the larger velociny (the
welocity associated with the s ffer pipe
gecrion) is used by convention in the
eguation for minor head loss, e,
P—I
h . —
L, s £ 13’
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Suddarr confraction: Seae chart. O e,
= \'\ K o swdden
: =y \Q'nlnu.:tinn
‘x 0.2 —

5/5-.. [d __-E:} o 0.2 o4 u_ﬁﬁ.u

- hIEIrDE
IFMote: These == I_ Moo= again that idhe farmger vwaHlociDy (fthe velociiy associsbed
backwards. The £; valnes with the srmaiier proe seciorr ) 1= msed by coneentdon in tee
lissed for Expansion showold F2
b= those for Conoraction, equation for minoer kead loss, 1.e, &, . — 2— .
and vics-versa 1

A AT EEDIEPESTOT? SANE L-orahmhc iAo (DassEd O NS EEAET '_!.' AP ITAE SrTial ey AT e I".-.".l".l
e T ST —-...______---:.“:-:lr.-.h'sl-c o [Far & = 70"
My = 0L0Z Tor & 207 e T G O30 Tar @' = O.Z —H__H-—_—

M, — 0.04 for & — 45° = K, — 0.25 for oD — 0.4 »
- - 0.15 far @' — 046 o - A

LT 000 for & (518 —— | L &3 F,

- - —F, 0. 15 for o i ]
Thess= are for conmmactiomms | I:aqm___\—.. I

| These are for expansioins !

Hermad's angd Seamcies
S srecaeefh Dol GO aed feey e S el e’ L5 fhressaesT & fbusee
Flarmged: A, — 0.2 Cweithoowt vanesl- K, — 1.1 (with vanesls A =— 0.2 M =— O34

Threaded: K, = 04

—
- i ——— —-ﬁm'
—
—

1, I

Fhreachac u aes

o et Bevwat _.-f"'-i'-'-;!a Cbramch Fhawl -\‘u.l
M, — DO

e
Flarmged: &; — 0.2 Flanpged: &, — 1.0 f

Tz Qlima FlowD:
Thraaded: &, — 1.5 Threaded : K,__:Ef_g:-,"

- DD gjpf* L | . -

Threaded: K; — 0.5
— MECH-RIOT
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Head

Pressure head

i converted to Total
v}alncit}r head head
LT-I-:;" ~ - _r‘/_ _— _ILE:E Z_E_ ~— ~ Lost velocity head
1_ - . s
2g 3, — Remaining
Fy i Vy2g velocity head
pe —
| Pressure | p___———— Remaining
pE head P pressure head
: -
| 2

Vena contracta

\ Separated
flow

MECH-KIOT

Graphical representation of
flow contraction and the
assoclated head loss at a

sharp-edged pipe inlet.



0.4 \.\Q‘D

0 0.05 0.10 0.15 0.20 0.25
riD

The effect of rounding of a pipe inlet
on the loss coetficient (from ASHRAE
Handbook of Fundamentals).



!

Flanged
elbow
K, =03

Sharp turn
K, =1.1

The losses during changes of direction
can be minimized by making the turn
“easy”’ on the fluid by using circular
arcs instead of sharp turns.
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Submerged
outlet

Lo
--ﬁ—
Tt

Entrained
ambient fluid ¥ _( Agman |
| =

i
) (sudden expansion)

All of the kinetic energy of the flow is
“lost” (turned into thermal energy)
through friction as the jet decelerates
and mixes with ambient fluid
downstream of a submerged outlet.
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PW PAwortes and pwmya/ Selection

»  Two general types of networks

A

. . | B

* Pipes in series
le —_— —_— °?
«  Volume flow rate is constant
|
« Head loss is the summation of ) fp Lp: Dy
parts V= Vi
hy \o=hy s+hp p
*  Pipes in parallel fo LD
Py - / \ Py<P,

«  Volume flow rate is the sum of the

—- A @

oB =i

components w
e Pressure loss across all branches is B o L D;

hy y=hy 5
the same U=V 4 U= U
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PW P Aworks and pwmya/ Selection
- For parallel pipes, perform CV analysis between points A and B

Va=Vp

—+af /J——Jraf +25 + hi
29 29

_pg

e Sihce Aniis H}qu:\Dmp for all hrthhpq head loss in all branches is the same
1’

A
P, — = Py<P,

— A e oB =—>

Ly V2 Ly V2

hr1=h La vy Vs

—\/\fm L= N7 59 =D,y
B J2» Ly, D,

hy y=hy

V=V, + U=V,
MECH-KIOT



PW PAwortes and pwmyw Selection

Head loss relationship between branches allows the following ratios to be
developed

ba|—=

~\fi L, D, V, D%\ fiLi D

Vi faLy D\ 2 &_D%(fngDl)z
=

Real pipe systems result in 3 system of non-linear equations. Very easy to
solve with EES!

Note: the analogy with electrical circuits should be obvious

»  Flow flow rate (VA) : current (1)

*  Pressure gradient (Ap) : electrical potential (V)

* Head loss (hL): resistance (R), however hL is very nonlinear



PW PAwortes and Puxmyaz S«‘onn

When a piping system involves pumps and/or turbines, pump and
turbine head must be included in the energy equation

P, V2 Po Vi
— + Qg —+ + 21 + hpump,u — — + (1{2—2 + 29 + hturb?lne,e + hL
Prg 29 Pg 29

The useful head of the pump Chpump,u) or the head extracted by
the turbine (hturbine,e), are functions of volume flow rate, i.e., they
are not constants.

Operating point of system is where the system is in balance, eq.,
where pump head is equal to the head losses.



Chapter 09
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ﬁéﬁaﬂ' Tves

» To know about the development of boundary layers in
external and internal flows

* Predict boundary layer thickness and other boundary
layer properties.

- Demonstrate the phenomena of turbulence, separation
and recirculation of flow



Bomwla/vy_ /a/?_% T/wo@?

» The narrow region, near the solid surface, over which velocity
gradient and shear stresses are large is known as boundary
layer.

» The study of velocity gradients, shear stresses, forces and
energy loss in the boundary layer is called as boundary layer
theory.

* A layer of fluid near the surface of the body in which the
velocity changes from zero on the surface to the free-stream
value.



* Prandtl’s insight into this phenomenon and his subsequent
development of boundary layer theory are milestones in the
development of fluid mechanics

» the thickness of the boundary layer increases in the
downstream direction

» just downstream of the nose of the plate the boundary layer is
observed to be laminar, but at some point in downstream
transition occurs and the boundary layer becomes turbulent.



Bomw{a/vy_ ﬁaz?m (BL.) Womﬂfwn

—=

A [
equation \ '~ Stokes
" equation

« BL approximation bridges

/FMW\ the gap between the Euler

H_ \Boundary layer approximation . a n d NS eq UaﬁOnS, a n d
\ i No fe;rl | .
e e B between the slip and no-
T \\, 7? eq(l)lafison

slip BC at the wall.

®)

y Y
4~ Outer flow (inviscid and/or

— irrotational region of flow)

— e Prandtl (1904) introduced

Ty —b_ﬁ)_ the BL approximation

“-
-~ .
" -
-
--—-_____-
- .

Boundary layer (rotational with

— non-negligible viscous forces)
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Eowrw{wvy ﬁa«?% fzgwon over o ? bl PPl

Transitional Turbulent

Rey= 10° Re =3 x 10°

Laminar

==np Laminar boundary Transition ___, Turbulent boundary

- -

— layer region layer

N F ~ o/ } Turbulent
| ?) 4} \}_’ \>\‘ /‘/ layer

Y >
Q A ‘) e A ~— Overlap layer
= —— Buffer layer
/ Viscous sublayer
_‘ Boundary layer thickness, 6

YVY
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 laminar  boundary
layer near the nose of
the Pla’ce

‘) s /-\ 1)
/A | ’ iy
) ! £

o the transition into 3

g

turbulent  boundary
layer
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E‘omwfa/b?_ ﬁaz?% fegzwn TMOM?A/ ov 7)170«&

[rrotational (core) Velocity boundary Developing velocity Fully developed
flow region layer profile velocity profile

V.

avg

_>|

V.

avg

_>|

Vivg / Ve
e ]
/

E Hydrodynamic entrance region - 7 -

Hydrodynamically fully developed region
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Bomwéwpy_ ﬂay% Ezg«low over o S}aﬁm&

Beautifully behaved
but mythically thin
boundary layer
and wake

Outer stream grossly
Thin front (a) perturbed by broad flow
boundary layer separation and wake

Re, = 10°

{E?) MECH-KIOT



Bo maéwp;l Zﬂy_%

Boundary layer comprises of two regions
Region |

The fluid exerts shear stress on the boundary exerts equal and
opposite force on the fluid known as shear resistance. A thin
layer adjoining the boundary is called boundary layer where
viscous shear takes place.

Region Il

The region outside the boundary layer where the flow
behaviour is quite like that of an ideal fluid when the potential
flow theory is applicable.



Terms associcled wilh Zomw{wp?_ Za?_m

Edge of the plate facing the direction of the flow is called
leading edge

Rear edqe is called trailing edge.

Near the leading edge of the plate boundary layer is laminar
and velocity distribution is parabolic.

» Thickness of the boundary layer is increase from the leading
edge as more and more fluid is slowed down by the viscous
boundary, becomes unstable and breaks into turbulent
boundary layer over a transition region.



Cloraderisfics of Zowrw(a/v?_ Za?m/

Thickness of Boundary layer(8) is arbritarily defined as the
distance from the boundary in which the velocity reaches
99% of velocity of the stream (u=0.99V)

Definition above gives an approximate value of the B.L.T
and hence it is generally termed as Nominal thickness of
the Boundary layer.

8 increases 3s the distance from leading edge x increases
O decreases as U increases
d increases as kinematic viscosity increases

When U increases in the downward direction ,boundary
layer growth is reduced



When U decreases in the dJownward direction, flow near the
boundary is further retarded, boundary layer growth is faster
and susceptible to separation.

The various characteristics of the boundary layer on the flat
plate are governed by inertial and viscous forces.

If Re < 5 x 105 boundary layer is laminar (velocity
distribution is parabolic)

If Re> 5 x 10° boundary layer is turbulent on that portion
(velocity distribution follows log law or a power law)



* Displacement thickness &* is the
imaginaty increase in thickness of
the wall (or body), as seen by the
outer flow, and is due to the effect
of 3 growing BL.

- Expression for & is based upon
control  volume  analysis  of
conservation of mass

[~ u
5 = | (1 —)dy
Ju ( U) ?

MECH-KIOT
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" w=0.99 U “]/ u=U "—;
L\ 1 U 1
\ -
o e
> I Equal | =0
5 o areas I u = uly)
|
|
| _l'___ ______ .
o ' — U
y ! g |
T i b
(a) (b)
The displacement thickness represents the .

amount that the thickness of the body °Y = Jﬂ (U = u)b dy
must be increased so that the fictitious
uniform inviscid flow has the same mass - )

flow rate properties as the actual viscous . (1 B _)d"’
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Momentum thickness 0 is another

measure of boundary layer thickness.

Defined as the loss of momentum flux
per unit width divided by pU? due to the
presence of the growing BL.

Derived using CV analysis.

V Outer flow

- ™ streamline \
A

I

=

FD, X A

ﬂ . U J
pu(U — u)dA = pb | u(U — u)dy .____({)_‘ _____
: JO | 8% (x)
Free-stream— paraes -1 -
) o mass flow T Mass flow
pbUO = pb| uw(U—-uw)dy [ ____ 1 deficit due
Jo T to boundary
layer

MECH-KIOT
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Problerm

If the velocity profile in a laminar boundary layer is
approximated by a parabolic profile

5-(HG)

Where u is the velocity at y and u— U as y — 8. Calculate
the displacement thickness and the momentum thickness



Lominar & Turbnlert Bo wywlm? Qﬁa’?%

TABLE 10-4

Summary of expressions for laminar and turbulent boundary layers on a smooth
flat plate aligned parallel to a uniform stream*

(a) (b)
Property Laminar Turbulentt® Turbulent®®
i 4.91 5 0.16 ; 0.38
Boundary layer thickness Z= — e T . =
X Av REI X ':R E:-} X (RE_\'}
: . 5 1.72 ¥ 0.020 5% 0.048
Displacement thickness - = — = — = —
¥ /R, X (Rey X (Re,)
: 8 0.6604 g 0016 6 0.037
Momentum thickness -=— — == = — == =
X \/Re, X (Re,) X (Re,)
: . _ 0.664 0.027 0.059
Local skin friction coefficient C;,=—— C;,= =

x= C x =
'"'v"'IREI I (REI}M £ {REI}J.G

* Laminar values are exact and are listed to three significant digits, but turbulent values are listed to only
two significant digits due to the large uncertainty affiliated with all turbulent flow fields.

T Obtained from one-seventh-power [aw.

T Obtained from one-seventh-powear law combined with empirical data for turbulent flow through smooth
pipes.
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Plovier Hoke ﬂ?wafwn
CaiAesian CoordimdAes

Inertia (per volume)

———— Divergence of stress
"_—

v >

— +v-vv)=—v +uViv + f
o F LY ) =TT e

S Convective Pressure  Viscosity  Other

Unsteady acceleration gradient body

acceleration forces

o0 o0 A du dp ’u  Pu  u
p ! - | | - PG

Fu— -+ v— = == — T = ;
dx?  oy* 022

ot “ar  ‘ay  Vaz) T ox
[ Ov O du du Jp v Fv 0%
| - pgy

Fu—+v—+w = —— + U

Ploc "oz " oy T Va2
[ Ow ow hw .5'11;) __Op ]u(ii'gw | 9w | E}Eu;) I

Fu |U: |UJ:

\ Ot dr dy 0z

odu v dw

aj: | 5yMEcL-|<|maE o
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